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1.  INTRODUCTION 
 

Atmospheric Rivers (AR) are relatively 
narrow plumes of moisture in the atmosphere that 
are responsible for a majority of the horizontal 
transport of water vapor outside of the tropics; 
~90% of the water vapor transport occurs typically 
in 4-5 long, narrow regions roughly 400 km wide 
(Zhu and Newell 1998).  Although they can come 
in many shapes and sizes, those that contain the 
largest amounts of water vapor and the strongest 
winds can create extreme rainfall and floods. 
Although not all ARs cause flooding, they are an 
important part of the global water cycle and 
provide beneficial rain and/or snow to the western 
United States, contributing substantially to the 
water supply of the region. 

Even though an improved understanding 
of the synoptic scale forcing behind ARs has 
emerged from roughly a decade of scientific 
studies, there are still challenges associated with 
predicting precipitation from these events. 
Forecasters are becoming increasingly better 
equipped to recognize the atmospheric conditions 
that can lead to AR formation, but numerical 
models often struggle to accurately predict the 
intensity, location, and timing of ARs.  Additionally, 
small changes in wind direction can impact how 
moisture transport interacts with local topography.  
This makes accurately forecasting the precipitation 
associated with ARs difficult, especially at the mid-
range lead times (3-5 days) that provide added 
benefit to management officials.   

Given these challenges, the 
Hydrometeorological Testbed (HMT)-
Hydrometeorological Prediction Center (HPC) 
collaborated with Earth Systems Research  
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Laboratory (ESRL) to conduct the Atmospheric 
River Retrospective Forecasting Experiment 
(ARRFEX).  Hosted by HPC from September 17-
28, 2012, the experiment featured retrospective 
analysis of 8 pre-selected AR events that resulted 
in heavy precipitation along the U.S. West Coast 
during the 2009-2012 cool seasons (Table 1).  A 
forecast ‘team’ consisting of researchers, 
numerical modelers and operational forecasters 
completed various forecast exercises for each of 
the archived cases in an effort to identify potential 
techniques and datasets that might be used to 
improve forecasts of AR-induced extreme 
precipitation events. 
 
2.  DATA AND METHODOLOGY 
 
2.1  Data 
 

ARRFEX featured a variety of numerical 
guidance systems (Table 2).  Guidance data was 
provided from 12 UTC initializations from dates 7, 
5, 3 and 1 day prior to the occurrence of the event.   
Additional information on the experimental 
datasets is located in Appendix A. 
 
2.2  Daily Activities 
 
2.2a Forecast Activities 
 

The focus of the forecast portion of the 
experiment was on three forecasting topics: (1) 
Day 5 and Day 3 24 h probabilistic QPFs (PQPF), 
(2) a 72 h cumulative QPF covering Days 1-3, and 
(3) timing (i.e., start and end times) of precipitation 
associated with land falling ARs.  

 
Task #1: Create 24 hour probability of QPFs  

The forecast team created two separate 
PQPF forecasts for a pre-determined 24 hour (00 
UTC to 00 UTC) period; one at a 5 day lead time  
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Event Dates of Event Dates of 
24 h PQPF 

Dates of 
72 h QPF 

Initialization 
#1 

Initialization 
#2 

Initialization 
#3 

Point Forecast 
Location 

4 13-14 Oct 2009 13-14 13-16 10/08 10/10 10/12 CZC 

7 17-23 Jan 2010 19-20 17-20 01/12 01/14 01/16 CZC 

1 23-25 Oct 2010 25-26 23-26 10/18 10/20 10/22 CZC 

5 10-14 Dec 2010 12-13 10-13 12/05 12/07 12/09 WPT 

2 16-23 Dec 2010 19-20 17-20 12/12 12/14 12/16 PPB 

8 15-19 Jan 2011 16-17 16-19 1/11 1/13 1/15 WPT 

3 18-26 Mar 2011 19-20 19-22 3/14 3/16 3/18 TPK 

6 14-20 Jan 2012 21-22 19-22 1/14 1/16 1/18 WTP 
 

Table 1) Showing the atmospheric river events used in ARRFEX.  The first column on the right displays 
the order in the project the case was analyzed, the second column shows the dates of the AR event, 
columns 3-4 display the dates of the experimental forecast products (00 UTC – 00 UTC), columns 5-7 
show the model initialization times provided for creation of the experimental forecast products, and 
column 8 shows the point forecast location used for the AR duration forecast and its subsequent 
verification. 
 
 

Provider Model Resolution Forecast Hours 
NCEP GFS 1.0 deg 180 h 
NCEP GEFS 70 km 180 h 

ECMWF ECMWF 1.0 deg 196 h 
ECMWF ECENS 70 km 196 h 

NCEP NAM 32 km 84 h 
CMC CMCE 1.0 deg 196 h 

ESRL/GSD HMT-Ensemble 9 km 84 h 

ESRL/PSD ESRL Reforecast 
Dataset 32 km 96 h 

NCEP/CMCE/ECMWF MMENS 70 km  180 h 
 

Table 2) Numerical guidance used in ARRFEX.  Experimental datasets denoted by gray shading. 
 
and another at a 3 day lead time. To complete this 
task, the team was provided operational and 
experimental numerical model guidance and 
datasets initialized at 12 UTC on 5 and 3 days 
prior to the forecast period.   The PQPF forecasts 
were based on the probability of greater than 3 
inches of precipitation falling during the 24 hour 
period of interest. Participants drew contours 
based on a 10% and 40% chance of exceedance 
(Figure 1). There was no set domain of interest for 
the PQPF forecast, although the overall forecast 
area focused on the West Coast and 
Intermountain West. 
   
Forecast Task #2: Create a Day 1-3 72 hour QPF  

Participants created a 72 hour cumulative 
QPF for a pre-determined (00 UTC to 00 UTC) 

period. Forecasters drew isohyets based on 
expected precipitation amounts of 4”, 8”, >12” 
(Figure 2).  This forecast was designed to mirror 
the Day 1-3 cumulative QPF generated by HPC.  
The forecast team was given operational and 
experimental guidance initialized at 12Z the day 
immediately before the prescribed forecast period 
in order to make the available data and time 
requirements as realistic as possible. 
 
Forecast Task #3: Predict precipitation duration at 
a specific point location  

The participants forecasted the time of 
precipitation onset and end at a specified location 
(refer to Appendix A/B) using 6 hour windows (e.g. 
00-06 UTC, 06-12 UTC, 12-18 UTC, and 18-00 
UTC). When relevant, forecasts of the start/stop



 

  
Figure 1) Experimental probabililty of QPF indicating the probability of >3” falling in the 24 hour period 
ending 00 UTC 26 October 2012 at (a) 5 and (b) 3 day lead times.  The white line represents >10% 
probability, the blue line >40%. 
 
time of the ‘heaviest precipitation’ at the specific 
point were also created.  The team was given 
guidance data using the same model initializations 
used in creating the 72 h QPF forecast. 
 
2.2b Subjective Forecast and Model 
Verification 
 
Verification of Day 5 and Day 3 PQPF 

Participants were asked to subjectively 
evaluate the performance of both their 
experimental forecasts and the available 
ensemble guidance for each case.  This was done 
by comparing the experimental and model 
guidance forecasts to the observed Stage IV 
precipitation data (displayed at 32 km) for the 
relevant 24 hour time period.  The team was 
asked a series of survey questions requiring them 
to assign a grade to their forecast (good, fair, and 
poor), and compare and contrast the accuracy of 
the model ensemble guidance probability of 
exceedance forecasts. 
 
Verification of Day 1-3 QPF 

Subjective evaluation consisted of 
comparing the experimental and model guidance 
forecasts against the observed Stage IV 
precipitation data (displayed at 4 km) for the 72 
hour period of interest. Participants were asked 
series of questions focusing on how accurate the 
forecasts were in terms of locations of the 

precipitation maximums, as well as accuracy of 
the accumulated precipitation amounts. 
Furthermore, the team’s experimental forecast 
was compared against the archived HPC Day 1-3 
forecast, in order to evaluate if the addition of the 
experimental guidance led to an improved 
forecast. 
 

 
Figure 2) Experimental 72 h QPF indicating the 
predicted total precipitation for the 72 h period 
ending 00 UTC 26 October 2012. The white line 
represents >4” of total precipitation, the green 
line >8”. 



Verification of AR duration forecast 
Atmospheric River Observatory (ARO) 

data was used from the location of interest (Table 
1, Appendix B) as the primary form of verification 
to accurately identify when the precipitation began 
and ended at the specific location.  Additionally, 
the participants were shown a series of 850 mb 
moisture flux forecasts (and corresponding 
standardized anomalies) from the GFS and 
ECMWF at 6 hour intervals overlaid with the 
precipitation (Stage IV) observed during the 
following 6 hour period.   They were then asked a 
series of questions as to how well the moisture 
flux and standardized anomaly forecasts 
correlated to the observed precipitation locations. 
 
3. EXPERIMENT RESULTS   
 
3.1 Probability of QPF 
 
Participant Forecasts 

Overall, participants felt that their PQPFs 
performed well when validated against the Stage 
IV observations.  When evaluating their Day 5 
PQPF, 7 (of 8) forecasts were classified as “good”, 
while just one was classified as “fair”, and none of 
the forecasts were classified as “poor.”  The 
results were similar for the Day 3 forecasts, where 
6 were classified as “good”, 2 “fair”, and none 
“poor.” 
 Not all rating designations had a group 
consensus, as the subjective nature of how to 
‘rate’ a forecast initiated discussion amongst 
participants. In most cases, the forecast was 
judged by whether or not the probability lines, 
particularly the 10% contour, captured all areas 
where greater than 3” of precipitation was 
observed.  If the 40% contour also captured all 
areas >3”, this made the forecast even stronger.  
However, forecasts that missed >3”, or missed 
areas of heavier precipitation that didn’t quite total 
3” amounts (e.g. 2-3”), with the 10% probability 
contour were considered inferior (especially at the 
3 day lead time).   

There was also diversity in the forecasts 
issued, particularly in regard to the spatial 
coverage of the 10% contour. Some of the issues 
discussed regarding probability forecasts included: 
  

> Is a probability forecast based on a spatial 
probability, rainfall amount probability, or both? 
> Is a 10% contour worthwhile?  What exactly 
does it tell the customer?  
> What information does the consumer get from 
a PQPF?  Is this the same information as the 
forecaster is trying to convey?  

The general consensus was that PQPFs 
provide a viable way for forecasters to address the 
potential for extreme events at the 5 and 3 day 
lead-time.  Forecasters found it advantageous to 
use probabilities in order to convey forecast 
uncertainty, as well as communicate risk to 
consumers, without being held to specific spatial, 
timing or precipitation amount requirements 
associated with creating prototypical deterministic 
QPFs. 
 
Operational and Experimental Guidance 

Figure 3 displays the subjective 
performance for the guidance PQPF, and shows 
that the reforecast dataset and HMT ensemble 
provided consistently better guidance than the 
operational ensembles.  The MMENS provided an 
upgrade over the GEFS and ECENS, which is to 
be expected since it is composed of all three 
operational ensembles (GEFS, ECENS, CMCE), 
but trailed behind the other experimental guidance 
in its ability to consistently identify areas of >3” of 
precipitation.   

An example of the benefits provided by 
the HMT ensemble and reforecast datasets 
compared to the operational ensembles is shown 
in Figure 4.  The higher resolution (9 km) of the 
HMT ensemble allowed it to focus the heavier 
precipitation, and therefore higher probabilities, 
around the areas of higher topographies.  In the 
case shown in Figure 4, it identifies the high 
potential for >3” of precipitation throughout the 
Sierra Nevada Mountains in interior California, but 
also identifies the second maximum of >3” in the 
northern Sierra Nevada that was missed by the 
other operational ensembles.  The higher 
probabilities displayed by the HMT ensemble, 
however, were a noted to be a bit misleading; 
since the model only contains 7 members, it is 
much more feasible to achieve higher probability 
values than it is for the operational ensembles that 
contain 20 (GEFS, CMCE) and 50 (ECENS) 
members.  Also, the higher probabilities of the 
HMT ensemble caused concern that the model 
itself may have a wet bias, which could increase 
the potential for false alarms in extreme 
precipitation events. 

The reforecast dataset consistently 
outperformed all other guidance, being chosen as 
the ‘most helpful’ guidance in 6 of the 8 cases.  
While the probabilities were consistently low 
(mostly between 5-15%), it outperformed all model 
guidance in its ability to alert forecasters to areas 
where the heaviest precipitation could potentially 
fall.  This can also be seen in Figure 4, as the



 

 
 

 
Figure 3) Ability of the ensemble guidance to forecast the area which received >3” of precipitation in a 24 hour 
period at a 5 day (top) and 3 day (bottom) lead time.   

 
reforecast data is the only guidance that suggests 
the potential for >3” of precipitation in the Sierra 
Madre and San Gabriel Mountains in 
southwestern California. 

Overall, the operational guidance, 
particularly the GEFS and ECENS, struggled to 
provide helpful guidance at either lead time as  

 
their probability forecasts consistently missed 
areas that were later observed to receive >3” of 
precipitation (Figure 4). Also of note was the 
possibility of the probability forecasts degrading 
from a 5 day lead time to a 3 day lead time.  
Figure 3 shows that the GEFS and ECENS were 
able to capture all/nearly all of the >3” area more 
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Figure 4) The probability of QPF (QPF) for >3” in 24 hours at a 3 day lead time for the GEFS, CMCE, ECENS, MMENS, 
Reforecast and HMT ensemble systems valid at 00 UTC 13 December 2010.  The probability forecasts are overlaid 
with the observed area of >3” from the Stage IV data (white dashed area).   
 
often at 5 day lead time than at 3 days. Several 
participants noted that they had seen this forecast 
degradation between 5 and 3 days lead times, 
particularly in regards to geopotential height fields 
in the north Pacific and Gulf of Alaska, but were 
surprised at this signal in the precipitation forecast 
fields.  The prevailing thought from the participants 
was that the lack of observations available to 
capture mid and upper level energy as it crosses 
the northern Pacific leads to a degradation of 
forecasts, which then improve as the guidance is 
able to ingest more observational data as systems 
approach the West Coast. 
 
3.2 Day 1-3 (72 hour) QPF 
 
Participant Forecasts 
 

Of the 8 QPFs created in ARRFEX, 5 
were subjectively rated as “good”, with 2 being 
rated “fair” and one “poor.”  The result of this 
ranking exercise revealed that QPFs struggle with 
total precipitation amounts more than spatial 
distribution. The three forecasts that were rated as 
“fair” or “poor” all noted that the main axis of heavy 
rainfall was captured, but amounts, particularly in 

the areas of maximum precipitation, were under-
represented.  A reason for this is the difference 
between the high-resolution 4 km Stage IV 
verification data and the more general, lower 
resolution that the QPF contours were drawn with.  
However, participants acknowledged that this is a 
major drawback in trying to accurately forecast 
extreme events with prototypical QPFs. 

Comparison with the archived HPC Day 1-
3 QPFs (Figure 5) revealed that forecasts created 
with the help of the experimental guidance were 
generally an improvement (7 of 8 cases).  The 
main improvement was in the QPF amounts; while 
the forecast maximum values were still 
consistently low, guidance from the experimental 
datasets and tools gave forecasters enough 
confidence to increase forecast amounts closer to 
what was observed.   

In terms of the experimental datasets and 
tools, standardized anomaly fields were deemed 
helpful by most participants.  Forecasters tended 
to use them to identify extreme values (relative to 
NARR climatology) of moisture flux and 
precipitable water quickly, which suggested the 
potential of heavy precipitation, regardless the 
model QPF guidance.  The higher resolution of the  



 

  

  

        
 
HMT ensemble produced QPFs that were more 
aggressive with amounts and more spatially 
refined to the topography than the lower resolution 
operational models.  This resulted in what the 
participants often deemed a more “realistic”  

 
looking model forecast.  This can be seen in 
Figure 5, as the HMT ensemble (Figure 5b) 
identifies an area of extreme precipitation >15” 
associated with Klamath Mountains along the 
northern California and southern Oregon coast 

Figure 5) The observed 72 h Stage IV 
precipitation (a) and the 72 h QPF from the 
HMT ensemble (b), NAM (c), GFS (d) and 
ECMWF (e) valid 00 UTC 22 January 2012. 



that is in good agreement with the Stage IV 
observations (Figure 5a).  The deterministic GFS 
and ECMWF (Figures 5d and 5e) hint at a local 
precipitation maximum in that location, but under-
predict the amounts.  Despite the apparent 
benefits of the HMT ensemble, however, there 
was continued concern of a wet bias as it 
consistently produced considerably higher 
precipitation amounts, despite being a mean 
ensemble value.  Preliminary examination into 
individual member QPF during the experiment 
revealed that, depending on the case, there could 
be noticeable differences in max QPF amounts 
and location between members; this is 
hypothesized to be due to the different physics 
schemes implemented, but further evaluation is 
needed. 
 Figure 6 shows that the operational 
guidance struggled to produced quality 72 hour 
QPFs. The deterministic QPFs from the 
operational GFS and ECWMF were consistently 
rated as only “fair” or “poor” forecasts.  Their total 
precipitation amounts were significantly low, in 
some cases as much as 10-12” below what was 

observed.  While their coarse resolution is an 
explanation for their struggles to produce extreme 
precipitation amounts and adapt the precipitation 
to the topography, participants were often 
disappointed at the quality of guidance from the 
ECWMF and GFS in both amounts and location.  
It should be noted that both deterministic versions 
of the models used in ARRFEX were displayed at 
1o resolution, which is coarser than what is 
currently used operationally. 

While participants were often disappointed 
at that quality of the ECWMF and GFS guidance, 
the NAM (32 km) performed well, consistently 
providing “fair” and “good” quality forecasts (Figure 
5c, Figure 6).  The increased resolution allowed 
the NAM to accurately represent precipitation 
maximums in favored topographical locations, as 
well as provide higher total QPFs.  Additionally, 
the expertise of the local topography and 
climatology of some participants was also 
extremely valuable in adjusting QPF amounts and 
locations, highlighting how valuable small-scale 
and topographical details are in AR forecasting. 
 

 

 
Figure 6) Subjective model performance of the 72 h QPF for each of the guidance systems used in 

ARRFEX. 
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3.3 AR Duration Forecasts 
 
Forecasts of AR-induced precipitation start 

and stop times revealed that model guidance 
struggles to accurately depict AR timing and 
duration.  Of the 7 cases where forecasters were 
asked to predict the start and stop time of the 
precipitation in a 6-hour window (refer to section 
2B), two forecasts were able to correctly depict the 
start time, and only one was able to correctly 
depict the stop time. These results were not 
correlated to the forecaster’s confidence in their 
forecast; 5 cases resulted in forecaster’s having 
“medium” confidence and two cases had “high” 
confidence in the start and stop forecasts, 
respectively. There were no forecasts of “low” 
confidence. However, only one “high” confidence 
forecast was successful.   Forecaster confidence 
was mostly correlated to model consensus, as 
forecasters had higher confidence if several 
models agreed on the start/stop timing. 

Investigation into the applicability of using 
GFS and ECWMF forecasts of 850 mb moisture 
flux and associated standardized anomalies to 
identify locations of precipitation maximums 
throughout AR events showed promise. 
Participant’s felt that the standardized anomalies 
were a little easier to use operationally, and their 
magnitudes were more consistent in correlating 
with heavy precipitation.  Further investigation into 
model forecasts of moisture parameters at 
differing atmospheric levels was encouraged. 
 
4. SUMMARY 
 

The 2012 Atmospheric River Retrospective 
Forecasting Experiment (ARRFEX) was 
conducted September 17-28.  The experiment 
focused on evaluating operational and 
experimental datasets to forecast atmospheric 
river (AR) induced extreme precipitation events 
along the West Coast, as well as diagnosing ways 
to better provide information to consumers at mid-
range timeframes.  The experimental datasets 
featured in ARRFEX were all found to provide 
value in AR forecast process, although to varying 
levels of consistency (Figure 7). The results of the 
project are summarized in the following: 
 
- Current operational global guidance struggles 

in AR events, consistently showing a low bias 
in their QPF.    The coarser resolution of the 
global models limits their ability to resolve 
topography-driven precipitation with the 
desired detail, in particular causing them to 
smooth over small-scale shifts in wind 

direction and localized areas of higher 
topography.  As a result, they consistently 
under-produce precipitation. However, higher-
resolution operational models, such as the 
NAM, do provide benefits in AR cases. Their 
ability to resolve topography helps identify 
areas favorable for precipitation maximums, 
although high-resolution models carry a known 
wet bias, so forecasts must be used 
accordingly.   
 

- Knowledge of local topography, climate and 
seasonal precipitation regimes along the West 
Coast is vital in AR forecasting.  Interaction 
among participants was vital to creating 
successful experimental forecasts. 

 
- Model forecasts of moisture parameters may 

be helpful in identifying the potential for 
extreme events, even when the model QPF 
does not forecast large precipitation amounts.  
However, the accuracy of model forecasts of 
moisture parameters in AR events (e.g. 
moisture flux, precipitable water) needs to be 
further investigated for potential model biases.  

 
- PQPFs appear to be a valid way to aid in 

forecasting heavy precipitation events at mid-
range lead times.  Forecasters appreciated 
that they provide a way to express forecast 
uncertainty while still conveying the risk of 
heavy rainfall events.  HPC currently utilizes 
probability forecasts for their Winter Weather 
and Excessive Rainfall products, but additional 
value may lie at the WFO and RFC levels in 
communicating risk at longer forecast lead 
times.    

 
- Forecasting AR duration is problematic.  

Models often err in forecasting the start/stop of 
precipitation, especially in situations where the 
precipitation is topographically forced or 
enhanced.  Model consensus did not correlate 
well to accurate timing forecasts. 

 
- Participants felt the HMT Ensemble provided 

helpful guidance, when applicable.  The 9 km 
resolution allowed the ensemble system to 
capture the topography, and therefore the 
topographically driven/enhanced precipitation, 
in a way that forecasters trusted.  However, 
there was a concern that the model may 
contain a wet bias, given its high member and 
mean precipitation forecasts.  

 



- The Multi-Member Ensemble system showed 
promise, but is limited by the members which 
are used to construct it.  While forecasters like 
the idea of showing a ‘true’ probability and the 
ease of seeing ensembles combined and 
displayed at once, its application in extreme 
precipitation forecasting is limited due to the 
fact the global ensembles struggle to produce 
accurate QPFs in these cases.   

 
- ESRL’s Reforecast Dataset was widely 

considered the most helpful experimental 
guidance featured in ARRFEX (Figure 7).  
Participants liked the fact that the guidance 
was created from actual observations, 

therefore eliminating any potential model 
biases.  Integration of the reforecast dataset 
into HPC operations is considered high 
priority, and HPC is currently working with 
ESRL on gaining real-time access to the 
guidance.   

 
- Standardized anomalies were also considered 

to provide helpful guidance to forecasters in 
extreme events.  Already operational at HPC, 
future efforts will involve investigating the use 
of the model climate, in partner with the 
reanalysis climate currently used to create the 
anomalies.

 

 
Figure 7) Participant feedback on the use and value of the experimental guidance systems featured in 
ARRFEX. 
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6. APPENDICES 
 

Appendix A 
Additional Information on Experimental 

Datasets 
 

HMT Ensemble 
Courtesy of: Linda Wharton and Brian Etherton, 
ESRL/PSD 
 

The HMT ensemble is a high resolution (9 
km), multi-physics ensemble produced by ESRL.  
Normally at 9 members, there were 7 members in 
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the experiment version due to difficulty initializing 
the NMM core member retrospectively.   
 

Member Core Moist 
Physics 

Boundary 
Conditions 

0 ARW Thompson  GEFS 
member 1 

1 ARW Ferrier GEFS 
member 1 

2 ARW Schultz GEFS 
member 2 

3 ARW Thompson  GEFS 
member 3 

4 ARW Ferrier GEFS 
member 5 

5 ARW Schultz GEFS 
member 6 

6 ARW Thompson  GEFS 
member 7 

Table A1) Showing the physics scheme and 
boundary conditions used for each member of the 
HMT ensemble used in ARRFEX. 
 
Domain: 30oN, -134oW; 45oN, -112oW 
Timeframe: 84 hours 
 
*Note: due to initialization problems, the HMT 
ensemble was not available for the October 2009 
case. 
 

Multi-Member Ensemble 
The Multi-Member Ensemble (MMENS) is 

a multi-model ensemble which contained 90 
members: the 20 perturbed members of the 
GEFS, the 20 perturbed members of the CMCE, 
and the 50 perturbed members of the ECMWF.  
This ensemble system is not operational; it was 
created only for the 8 archived cases used in the 
experiment in an effort to examine the potential 
benefit of multi-model ensembles in creating 
PQPF forecasts.  Multi-ensembles are candidates 
to improve PQPF forecasts, as they capture the 
true scope of the range of potential QPF across 
several guidance systems.  A recent study by 
Hamill (2012) concludes that multi-model 
ensembles do provide benefit to probability 
forecasts, and suggests further investigation into 
their creation and usage. 

 
Reforecast guidance from the ESRL 2nd 
Generation Reforecast Dataset (GEFS) 

PSD/ESRL recently released their 2nd 
Generation Reforecast Dataset, which uses 
version 9.0.1 of the GEFS (implemented 14 
February, 2012).   

The reforecast guidance featured in 
ARRFEX consisted of 24 h PQPF and 24 h mean 
QPF based off the ESRL 2nd Generation Dataset.  
For each of the specific forecasts and lead times 
used, the output of the 00 UTC GEFS mean was 
compared statistically, at each grid point, to a 
collection of relevant reforecasts of the same 
forecast lead-time. This collection contains all 
reforecasts within 3 months of the initialization 
date for the entire 25 year period contained in the 
dataset.  Forecasts of the same lead time (e.g. 72 
hours) for all 2275 cases were compared to the 
current forecast using a ranked-analog technique. 
Using the dates of the closest 50 matches, 
observed precipitation data (North American 
Regional Reanalysis) used to calculate probability 
of precipitation and mean precipitation at that grid 
point.   

Recent studies (Hamill and Whitaker, 
2006; Hamill, 2012) have shown favorable results 
in regards to using reforecast products in PQPF. 
Further details on the dataset can be found at: 
http://www.esrl.noaa.gov/psd/forecasts/reforecast2
/README.GEFS_Reforecast2.pdf 
 

Appendix B 
Atmospheric River Observatory Locations  

 
Abbreviation Location Elevation 

CZC Cazadero, CA 475 m 
WPT Westport, WA 5 m 
PPB Pt. Piedras 

Blancas, CA 
11 m 

TPK Three Peaks, CA 1021 m 
Table B1) Showing the locations and elevations of 
the Atmospheric Observatory Locations used in 
ARRFEX. 
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