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Motivation

Series of studies examining application of ensemble QPF and QPF adjustments for

short-term streamflow forecasts (Carlberg et al., 2020, Goenner et al., 2020, Kiel et al., 2022, Hugeback et al.,
2023)
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Motivation

* We continue to explore QPF post-processing methods
* Spatial displacement
* Intensity
* Timing

* Question arose, what hydrologic model should we use going forward?

* A second question was posed - does 1t matter?




Motivation
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Uncertainty

Predicted precipitation adds its own sources of error and uncertainty




Research Question

Does the uncertainty/error in the QPFs outweigh the uncertainty of the
hydrologic modeling system, s.t. QPF-driven forecasts from different
models are largely the same?

We hypothesize that the QPF error and uncertainty will dominate the streamflow
prediction due to the challenges associated with accurately predicting precipitation
over a specific watershed, similarly to the results found in Shu et al. 2022.

We verify and compare streamflow forecasts produced from three
different hydrologic models given the same ensemble QPF.




Methods

* Study Sites
* 8 headwaters
» 700-1400 km?’ VN P
* Basins chosen to have acceptable =
model NSE and Pbias from h vd Wi
Hugeback et al. 2023 (WRF-hydro) A
* Event selection
* 2018 warm-season not-IA A L
* Localized heavy rain across areas of
the domain

* Flash flooding watches and warnings
issued for nearly all cases



Methods — Data Sources

* High-Resolution Rapid Refresh Ensemble (HRRRE)

 HRRRv3 dynamical core, 3km resolution
* 9-member convection allowing ensemble
* 36-hour simulation duration

* Perturbations to water vapor mixing ratio, temperature, pressure, as well as zonal and meridional
wind in the initial conditions and lateral boundary conditions

* North American Land Data Assimilation System, version 2 (NLDAS-2)

e 1/8" degree resolution
* 4 years worth of spin-up/training/calibration data

* Oct 2013-spring 2018

* Models run at 1 hour time step
* Inputs averaged to watershed scale depending on model requirements



Process representation

Antecedent Precipitation Index Model
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Methods — Models

* WRF-Hydro v 5.1.1 in National Water Model 2.0 configuration
(Gochis et al. 2020)

WRF-Hydro Physics Components — Output Variables
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Methods — Models

* Sacramento Soil Moisture Accounting Model

(SAC-SMA ; Burnash et al. 1973)
* Lumped model Y Mm\;éf%\\
* Conceptual processes B :r#% oreor
» Two soil layers MR e
 Tension and free water storage
* Five components of runoff ol N r/\

BASEFLOW

* Converted from 6-hourly timestep to 1-hourly

OUTFLOW

* Ran simple SCE parameter calibration due to this conversion

* 1-hr unit hydrograph acquired from NCRFC



Methods — Models

* Long-Short Term Memory Recurrent

Neural Network (LSTM) \
ngh e 8 Post-hoc explainability methods
5 [T
* Machine learning model I T | R
S s
* Same input fields as WRF-Hydro but as | mmmm- NI || |[Thes f TN
. - Logistic Reg
hourly basin averages :
* Time fields added — Year, Month, Day, Hour, =
Minute .
* Normalized between 0 and 1 Low iy or e
. Low Model complexity High
* Model structure testing and ' -
hyperparameter tuning Fully Partiall TRS—
Interpretable Interpretable

* Optimization of the model loss function (MSE)

Figure from Flora et al. 2022




Methods — Models

Final test -
e Multimodel Ensemble

* Constructed from all three hydrologic model outputs, 27 members

* Ensemble weighting method
* MSE in peak discharge for events used to weight the QPF+model members
* Conducted validation by bootstrapping to hold out one event, and recalculate weights

* Each member was ranked for all events, the average weight based on the aggregate of all
the bootstraps was used for the final ranking and weighting for each gauge location




Methods — Ensemble Forecast Verification

* Evaluation based on probability of o ——
peak discharge falling into NW'S /
flood categories. o

N

‘ ~

* Brier Score
* Dichotomous <
* Based on action stage threshold

Observed Outcome

* Ranked Probability Score

* Continuous I I | : ! |

* Based on all stages (e.g., no-action,
action, minor, etc.)




Methods — Ensemble Forecast Verification

* Reliability * Discrimination
» Relative frequency of * Relative frequency of forecasts given the
observations given the observation
forecasted probability * Tells us if action stage was forecasted for
* Action stage cases where action stage was or was not
observed

Discrimination Example
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RGN IR
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* Brier Score

* WRF-hydro and SAC-SMA forecasts
had similar mean BS

 WRF-Hydro scores most consistent
across all gauge points and events

* Ranked Probability Score

 SAC-SMA median score 1s best, but
range larger than WRF-Hydro

* LSTM forecasts had largest range
and poorer verification scores
overall.

* Multimodel improved BS and RPS
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RGN IR

* Discrimination <:g00d—>

* WRF-Hydro and SAC-SMA

a) 2 145 WRF-Hydro b 10 SAC-SMA
forecasts best discrimination for ‘. e 8- 00 Above Actn tage
flow above and below-action stage £06l ™\
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RGN IR

* QPF vs Discharge (observed/simulated)

 Larger discharge associated with higher
predicted precipitation

* WRF-Hydro relationship similar to obs Q

* SAC-SMA sensitive to higher amounts of
QPF, results 1n significant streamflow
response

. STM seems to be indifferent to amount of
QPF nput
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Conclusions

* SAC-SMA and WRF-Hydro forecasts performed well when evaluated
for prediction of action stage

* LSTM performed the worst overall

* Potentially data limited.

* We used equal amount of input/training for all models, which may have left LSTM
lacking the number of high-flow events needed in it’s training sets to have a chance of
success without the addition of physical process equations.

* Does the hydrologic model matter?
* TAKE AWAY #1 = Yes!
* The model 1s not a simple transfer function.
* QPF-driven ensembles from different models have different characteristics.



Conclusions

/4 — )
Summary of rankings from multimodel ensemble

SAC-SMA WRF-Hydro

LSTM WRF-Hydro
WRF-Hydro* LSTM
LSTM* WRF-Hydro

SAC-SMA LSTM
WRF-Hydro* LSTM
SAC-SMA WRF-Hydro

WRF-Hydro LSTM
* - Mixed with SAC-SMA members

 Which model 1s the best choice?

* SAC-SMA was most often in the top 9
models (highest weight)

* LSTM received the highest weights for
two basins

* Very poor performance at other sites may be
reason for low average forecast skill

* TAKE AWAY #2 = Different models
performed differently depending on the
basin — there 1s no “one-size-fits-all”
approach. Multimodel ensemble
approach continues to show promise.



Thank you for listening!




