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Motivation

Series of studies examining application of ensemble QPF and QPF adjustments for 
short-term streamflow forecasts (Carlberg et al., 2020, Goenner et al., 2020, Kiel et al., 2022, Hugeback et al., 
2023)
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Motivation

• We continue to explore QPF post-processing methods 
• Spatial displacement
• Intensity
• Timing

• Question arose, what hydrologic model should we use going forward?

• A second question was posed - does it matter? 
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Research Question

Does the uncertainty/error in the QPFs outweigh the uncertainty of the 
hydrologic modeling system, s.t. QPF-driven forecasts from different 
models are largely the same? 

We hypothesize that the QPF error and uncertainty will dominate the streamflow 
prediction due to the challenges associated with accurately predicting precipitation 
over a specific watershed, similarly to the results found in Shu et al. 2022.

We verify and compare streamflow forecasts produced from three 
different hydrologic models given the same ensemble QPF. 



Methods

• Study Sites
• 8 headwaters
• 700-1400 km2

• Basins chosen to have acceptable 
model NSE and Pbias from 
Hugeback et al. 2023 (WRF-hydro) 

• Event selection
• 2018 warm-season
• Localized heavy rain across areas of 

the domain
• Flash flooding watches and warnings 

issued for nearly all cases
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Methods –  Data Sources

• High-Resolution Rapid Refresh Ensemble (HRRRE)
• HRRRv3 dynamical core, 3km resolution
• 9-member convection allowing ensemble
• 36-hour simulation duration
• Perturbations to water vapor mixing ratio, temperature, pressure, as well as zonal and meridional 

wind in the initial conditions and lateral boundary conditions

• North American Land Data Assimilation System, version 2 (NLDAS-2)
• 1/8th degree resolution
• 4 years worth of spin-up/training/calibration data
• Oct 2013-spring 2018

• Models run at 1 hour time step 
• Inputs averaged to watershed scale depending on model requirements



Background

• A “plethora” of hydrologic models with different 
degrees of complexity is available?

Lumped Distributed

Huning  and Margulis, Env. 
Mod. Soft., 2015

Spatial representation

Process representation

Temporal 
representation

Continuous vs event-based



Methods – Models

•WRF-Hydro v 5.1.1 in National Water Model 2.0 configuration 
(Gochis et al. 2020)

• Fully distributed
• Most physics-based of three
• NoahMP LSM – 1km grid

• 2m soil depth, 4 layers
• Bucket model for ground water
• 250m surface and subsurface routing, steepest decent

• Muskingum-Cunge reach-based routing

• Subdomain pulled from the NWM
• Parameters and watershed configurations 



Methods – Models

•Sacramento Soil Moisture Accounting Model                           
(SAC-SMA ; Burnash et al. 1973)

• Lumped model
• Conceptual processes
• Two soil layers

• Tension and free water storage
• Five components of runoff 

• Converted from 6-hourly timestep to 1-hourly
• Ran simple SCE parameter calibration due to this conversion

• 1-hr unit hydrograph acquired from NCRFC



Methods – Models

•Long-Short Term Memory Recurrent 
Neural Network (LSTM)

• Machine learning model
• Same input fields as WRF-Hydro but as 

hourly basin averages
• Time fields added – Year, Month, Day, Hour, 

Minute
• Normalized between 0 and 1

• Model structure testing and 
hyperparameter tuning

• Optimization of the model loss function (MSE) Figure from Flora et al. 2022



Methods – Models

Final test -
•Multimodel Ensemble

• Constructed from all three hydrologic model outputs, 27 members

• Ensemble weighting method
• MSE in peak discharge for events used to weight the QPF+model members
• Conducted validation by bootstrapping to hold out one event, and recalculate weights
• Each member was ranked for all events, the average weight based on the aggregate of all 

the bootstraps was used for the final ranking and weighting for each gauge location



Methods – Ensemble Forecast Verification

• Evaluation based on probability of 
peak discharge falling into NWS 
flood categories.

• Brier Score
• Dichotomous
• Based on action stage threshold

• Ranked Probability Score
• Continuous
• Based on all stages (e.g., no-action, 

action, minor, etc.)



Methods – Ensemble Forecast Verification

• Reliability
• Relative frequency of  

observations given the 
forecasted probability

• Action stage

• Discrimination
• Relative frequency of forecasts given the 

observation
• Tells us if action stage was forecasted for 

cases where action stage was or was not 
observed



Results

• Brier Score
• WRF-hydro and SAC-SMA forecasts 

had similar mean BS 
• WRF-Hydro scores most consistent 

across all gauge points and events

• Ranked Probability Score
• SAC-SMA median score is best, but 

range larger than WRF-Hydro

• LSTM forecasts had largest range 
and poorer verification scores 
overall.

• Multimodel improved BS and RPS

Best



Results

• Reliability
• WRF-Hydro and SAC-SMA 

forecasts have best reliability, with a 
few exceptions

• SAC-SMA forecasts probabilities 
are poorly distributed

• Low sample sizes in mid-probabilities
• LSTM poorest reliability, esp. at 

high probabilities
• Multimodel ensemble best 

reliability, slight underforecasting at 
higher forecast probability



Results

• Discrimination
• WRF-Hydro and SAC-SMA 

forecasts best discrimination for 
flow above and below-action stage 

• SAC-SMA tends to give low 
probability for action stage when it 
occurred

• LSTM forecasts ok for events below 
action stage

• Poor performance when event  
exceeded action stage

• Multimodel: did not improve upon 
WRF-Hydro or SAC-SMA

good



Results

• QPF vs Discharge (observed/simulated)

• Larger discharge associated with higher 
predicted precipitation

• WRF-Hydro relationship similar to obs Q

• SAC-SMA sensitive to higher amounts of 
QPF, results in significant streamflow 
response

• LSTM seems to be indifferent to amount of 
QPF input



Conclusions

• SAC-SMA and WRF-Hydro forecasts performed well when evaluated 
for prediction of action stage

• LSTM performed the worst overall
• Potentially data limited.
• We used equal amount of input/training for all models, which may have left LSTM 

lacking the number of high-flow events needed in it’s training sets to have a chance of 
success without the addition of physical process equations.  

• Does the hydrologic model matter? 
• TAKE AWAY #1    Yes!  
• The model is not a simple transfer function.  
• QPF-driven ensembles from different models have different characteristics.



Conclusions

• Which model is the best choice? 

• SAC-SMA was most often in the top 9 
models (highest weight) 

• LSTM received the highest weights for 
two basins

• Very poor performance at other sites may be 
reason for low average forecast skill

• TAKE AWAY #2     Different models 
performed differently depending on the 
basin – there is no “one-size-fits-all” 
approach.  Multimodel ensemble 
approach continues to show promise.

Site Best 9 Worst 9

DARW3 SAC-SMA WRF-Hydro

RPMM5 LSTM WRF-Hydro

IONI4 WRF-Hydro* LSTM

MCWI4 LSTM* WRF-Hydro

MCHI4 SAC-SMA LSTM

TPLI4 WRF-Hydro* LSTM

VLPI4 SAC-SMA WRF-Hydro

MGOI4 WRF-Hydro LSTM

* - Mixed with SAC-SMA members

Summary of rankings from multimodel ensemble



Thank you for listening! 


