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The “UFS-AR” project
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Motivation 

• Decision makers need greater lead time, precision on landfall, and accuracy of precipitation estimation.

• Western region forecasters rely upon multiple models to forecast atmospheric rivers.

• NOAA wants to improve atmospheric river forecasts.

Project objectives

• Create a prototype application of the NOAA Unified Forecast System (UFS), dubbed UFS-AR, that improves 

upon current operational and nonoperational models.

• Evaluate and compare UFS-AR and other AR models for forecasting landfalling ARs and precipitation events 

over the U.S. West Coast, focusing on winter 2022–2023.

• Conduct testbed forecasting experiment under the Hydrometeorological Testbed, using winter 2022–2023 as a 

test case.

• Apply social science to assess stakeholder AR forecast experiences.

A project funded by the NOAA “Water in the West” appropriation aimed 

improving forecasting of atmospheric rivers (read: heavy precipitation events).



The “UFS-AR” project
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Model configuration (currently under development)

• UFS-based 13-km global model, with 3-km nest over the Pacific and 

western U.S.

• Data assimilation, including shift from GSI to JEDI.

• Improved/refined model physics suitable for high-res nesting in global 

model.

Experimental design

• Eventually - Retrospective medium-range (out to +10 days) forecasts 

for two periods of frequent landfalling ARs and heavy precipitation: 

Dec–Jan 2022–23; Feb–Mar 2023.

• Currently – Prototype forecasts for six selected cases are in progress.

Forecast evaluation/verification for winter 2022–2023

• Evaluate and intercompare forecast skill for various deterministic 

operational (NOAA GFS, ECMWF IFS) and nonoperational NWP 

models (UFS-AR prototype, CW3E/Scripps “West-WRF”, NOAA/EMC 

“AR-AFS”) as well as machine-learning weather models.

• Apply grid-point and object-based methods to evaluate forecasts, 

focusing on integrated water vapor transport (IVT) and precipitation 

over the east Pacific/U.S. West Coast.



Overview of winter 

2022–2023 
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Motivation
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 Atmospheric Rivers are an 

important driver of Western US 

rainfall.

 Increasing their predictability at longer lead-times 

would be a huge boon to decision makers.



 Atmospheric Rivers (ARs) are narrow transitory corridors with 

elevated Integrated Vapor Transport (IVT)

 Responsible for most of the poleward water vapor transport in 

the extratropics

 Often found within the warm sector of an extratropical 

cyclone
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Atmospheric 

Rivers



Details

o Time Period –December 2022 through March 2023.

o Domain – Entire North Pacific Basin

o Verification – ECMWF’s 5th atmospheric reanalysis (ERA5). Provides us with the best representation of the observed state of the atmosphere.

o Global Forecast System (GFS) - NOAA’s operational numerical weather prediction (NWP) model. Initialized daily at 00z.

o Integrated Forecast System (IFS) - ECMWF’s operational NWP model. Initialized daily at 00z.

o Graphcast - 3D Machine Learning weather prediction model (MLWP) using Google DeepMind. Trained on ERA5 reanalysis data and initialized with the same initial 
condition as GFS. Initialized daily at 00z.

o PanguWeather - 3D MLWP model. Trained on ERA5 reanalysis data and initialized with the same initial condition as GFS. Initialized daily at 00z.

o Method for Object-based Diagnostic Evaluation (MODE) – Compares gridded forecast fields with observation in an object based way. This applied to integrated vapor 
transport (IVT) for objects with above 250 kg/m/s of IVT throughout.
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Is IVT Well 

Forecast by 

MLWP?
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 Root Mean Square Error of 

IVT over the North Pacific 

Basin

 The MLWP models 

outperform the NWP 

models
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Object Based Evaluation
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 Five Day Forecast, 

initialized on Jan 29, 

2023 00z

 Top – IVT from ERA5

 Bottom – Mode output

 Shading – ERA5

 Green – GFS

 Orange – IFS

 Blue – Graphcast

 Red - PanguWeather



How Many 

Observed ARs 

are Matched
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 Based on many factors the 

MODE software matches 

forecast objects with 

Observed objects

 At most lead times the 

MLWP models match 

fewer observed ARs than 

the NWP models.



Raw Field vs Object Based

Difference in Raw IVT Difference In Matched AR Objects
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Basin View of 

Detected ARs
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 The thin green lines represent the 
number of observed ARs at each 
grid point.

 There is substantial noise in the 
number of ARs found at each grid 
point over the course of the 
season.

 Each model shows positive bias 
just off the coast of Northern 
California / Southern Oregon 
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Raw Field vs Object Based

Difference in Raw IVT Difference In Detected ARs
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Measure of Effectiveness
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 𝑀𝑜𝐸 =
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
,
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡

 Compares the area of each 

object with the area of 

intersection

 If you plot MoE on an (X,Y) plane a 

perfect forecast will sit at (1,1) in 

the upper right-hand corner

 If the forecast is the same size as 

the observation than the MoE will 

fall on the 1:1 line.



Differences Within 

Matched & Detected Objects

Difference in IVT DistributionDifference In AR Size
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Forecast AR 

is too small

Forecast AR 

is too large



Final Thoughts

 MLWP models are capable of producing realistic ARs but are more likely than NWP models 

to miss observed ARs

 MLWP models produce ARs that are, on average, too small and too weak compared to 

observed ARs

 Caveat – This is based on one season of data, work to expand this analysis as far 

backwards as possible is under way.
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