Addressing the Snow Accumulation Challenge at CIWRO/NSSL

Andrew A. Rosenow

WPC Winter Weather Experiment Seminar Series December 12, 2023

Contributors: Heather Reeves, Michael Baldwin, Petar Bukovčić

Motivation

- With winter precipitation, impacts are generally tied to how much – or even whether – frozen precipitation
 - accumulates
- For some events, it's clear that most, if not all precipitation will accumulate

Motivation

- For other events, though, warm road/object temperatures limit accumulations – and therefore impacts.
- Sometimes, heavy rates can overcome warm surfaces
- How do we know when heavy snow + warm surface yields impacts?

Motivation

- The remainder of this presentation will focus on these two problems rate vs. surface temperature for snow accumulation
 - Daniel Tripp covered ice accumulation rate on December 7 will do so again at AMS Annual Meeting!
- First, I will present a current effort to create a two-dimensional snow intensity product from radar observations
- Then, I will present updates to the existing Probability of Subfreezing Roads (ProbSR) MRMS product

Part 1: Radar-derived Snow Intensity

Background

- Real-time snow rate is a parameter of interest
 - Better information would benefit both forecasting and decision support
- Fundamental problem: snow rate isn't observed at adequate spatial/temporal resolutions

Visibility and Snow Intensity

- ASOS Snow Intensity reports are often used as a stand-in for snow rate
- Snow Intensity is categorical (light, moderate, heavy), and based on visibility
- The visibility-to-snow rate relationship is problematic at times (Rasmussen et al. 1999)
- Spatial and temporal resolution of visibility observations are far greater than other snow rate observations

ASOS Sites

Deriving Snow Intensity

ASOS Snow Intensity Categories:Light: $V \ge 0.75$ mi. (1.2 km)Moderate: 0.25 mi. (.4 km) < $V \le 0.50$ mi. (.8 km)Heavy: $V \le 0.25$ mi. (.4 km)

• Visibility can be calculated from extinction, which is what the ASOS measures:

• Daytime visibility:
$$V_{day} = -\frac{\ln(\varepsilon)}{\sigma_e}$$
 (Koschmieder 1924)

• Nighttime visibility: $V_{night} = 1.31 V_{day}^{0.71}$ (Boudala et al. 2012)

Where σ_e is extinction (km⁻¹), and ϵ is the brightness threshold (here, we used 0.02)

Calculating Extinction

- Bukovčić et al. (2021) developed a relationship between liquid precipitation rate (*S*, *mm/hr*) and extinction (σ_e)
- Solving for extinction as a function of precipitation rate:

$$\sigma_{e} = \gamma (3 + \mu) \frac{S * (4 + \mu)^{(1 + \beta + \delta)}}{\left[1.2 * \alpha_{o} * f_{rim}^{1.5} * d_{0} * \left(\frac{p_{o}}{p}\right)^{0.5} * D_{m}^{(1 + \beta + \delta)} * \gamma (4 + \mu + \beta + \delta)\right]}$$

• To simplify, we're going to use typical values for μ (PSD shape parameter); α_o and β (snow density factors) ; d_o and δ (terminal velocity factors)

Calculating Extinction

$$\sigma_e = \gamma (3 + \mu) \frac{S * (4 + \mu)^{(1 + \beta + \delta)}}{\left[1.2 * \alpha_o * f_{rim}^{1.5} * d_0 * \left(\frac{p_o}{p}\right)^{0.5} * D_m^{(1 + \beta + \delta)} * \gamma (4 + \mu + \beta + \delta)\right]}$$

• With representative values¹ (μ =0 for an exponential distribution, and α_o = 0.15, β = -1, d_o = 0.7, and δ = 0.23), the expression reduces to:

$$\sigma_e = 8.47 \ * \left(\frac{p}{p_o}\right)^{0.5} * \frac{S}{D_m^{0.15} * f_{rim}^{1.5}}$$

- The remaining degrees of freedom are median particle diameter (D_m) and particle riming factor (f_{rim})
- <u>Objectives</u>: how does this expression verify? Do D_m and f_{rim} choices substantially impact verification statistics?

¹ Based on observations in Oklahoma

Data Sources

- DJF observations from:
 - ASOS at 398 largest commercial airports 2017 to 2023
 - Highest intensity within 10 minutes of XX:00 (correspond to HRRR valid time)
 - MRMS dual-pol instantaneous precipitation rate
 - No gauge correction passes to simulate a real-time product
 - Surface pressure from HRRR
 - A 2D field using this methodology wouldn't be able to use ASOS station pressure
- These data were used to calculate extinction, then visibility
 - Used NSSL's experimental Spectral Bin Classifier p-type algorithm in MRMS to determine where snow fell
 - Did not include mixes (RASN, PLSN, etc.)

Derived Visibility Tests

- Based on range of values observed in Oklahoma
- **Low**: Small, less-rimed particles
 - $D_m = 1 \text{ mm}$
 - $f_{rim} = 1.2$
- <u>High</u>: Large, more-rimed particles
 - $D_m = 3 \text{ mm}$
 - $f_{rim} = 1.8$

• <u>Reflectivity</u>:

- Thresholds based on percentiles of the data
 - <u>86%</u> of observations in this dataset are light, <u>97%</u> of observations are mod or light
- Light < 14 dBZ; Moderate < 18 dBZ and \geq 14 dBZ; Heavy \geq 18 dBZ

Two-Category Test

• Here, we test the performance of the visibility using two categories of snow intensity; "heavier" (moderate+heavy combined), or light.

Observed

Predicted		Moderate+Heavy	Light
	Moderate+Heavy	ТР	FP
	Light	FN	TN

Verification Stats - Categories

Low		High		Reflectivity	
POD	72	POD	39	POD	56
FAR	78	FAR	65	FAR	78
Bias	3.3	Bias	1.1	Bias	2.5
HSS	21	HSS	29	HSS	20
EDI	30	EDI	8	EDI	22

 Low experiment has a highest POD/EDI; High experiment has lowest FAR/Bias, and highest HSS

Constraining the dataset

- Limit to sites within 75 km of a radar, and with a dewpoint depression of 1.5 °C
 - Minimize impacts of radar overshooting and sublimation

Low		T _d + Dist	Low
POD	72	POD	90
FAR	78	FAR	75
Bias	3.3	Bias	3.7
HSS	21	HSS	21
EDI	33	EDI	46

Gerrity Skill Score (GSS)

- GSS (Gerrity, 1992) allows comparison of more than two categories
- The GSS is weighted by the difficulty of the categorization
 - The less frequent a category occurs, the more a correct diagnosis is worth

$$GSS = \sum_{i=1}^{3} \sum_{j=1}^{3} p_{ij} S_{ij}$$

Where:

p is a measure of probability

s is a scoring weight based on the category's frequency

Next slide: GSS results using the constrained (< 75 km, 1.5 °C T_d depression)

		Obse	erved			
	Low	Light	Moderate	Heavy	Low	
	Light	<u>3150</u>	78	15	$\mathbf{GSS} = 0.48$	
	Moderate	2470	<u>469</u>	78		
	Heavy	231	217	<u>126</u>		
q	High	Light	Moderate	Heavy	High GSS = 0.33	
Predicte	Light	<u>4953</u>	304	37		
	Moderate	863	<u>432</u>	147		
	Heavy	35	28	<u>35</u>		
	Reflectivity	Light	Moderate	Heavy	Reflectivity	
	Light	<u>3802</u>	207	45	GSS = 0.36	
	Moderate	1604	<u>373</u>	81	CIVA/DO	
	Heavy	445	184	<u>93</u>		
					ACH AL	

Case Study – 17 February, 2022

- Heavy, sudden-onset snow caused dangerous travel conditions in northern IL
- 100+ car pileup on I-39 starting at 2015 UTC that closed the Interstate until the next day

Image credit: Brandon Rixstine/WGLT

Snow Intensity Analysis – 1800 UTC

Snow Intensity Analysis – 2000 UTC

75

60

-15

Part 2: Probability of Subfreezing Roads (ProbSR) Update

Probability of Subfreezing Roads - ProbSR

- ProbSR is a random forest ML model
 - What it predicts: the probability that the *road surface temperature is below freezing*
 - What it doesn't predict: the probability *the road accumulates ice*
- ProbSR is trained on Road Weather Information System (RWIS) data
- HRRR fields as predictors

ProbSR - Predictors

Input predictors	Input predictors
Surface temperature $(T_{\rm sfc})$	2-m temperature (T_2)
Friction velocity	10-m wind speed (gust)
Latent heat flux	Sensible heat flux
Consecutive hours below	Consecutive hours above
freezing $T_{\rm sfc}$	freezing $T_{\rm sfc}$
Consecutive hours below	Consecutive hours above
freezing T_{2m}	freezing T_{2m}
Downward shortwave	Downward longwave radiation
radiation flux	flux
2-m dewpoint	Mid-cloud cover percentage
No. of days from 10 Jan	Urban land use/land cover flag

ProbSR Performance - General

- Probabilities for both Climatology and ProbSR are well-calibrated
- ProbSR has a higher Probability of Detection and lower Probability of False Detection than Climatology
 - ProbSR algorithm statistically performs very well overall
 - You can always improve ... where is ProbSR less performant, can we increase its skill?

Baldwin et al. (2023)

ProbSR Performance – by Temperature

- ProbSR has a warm bias probabilities too low below about 2 °C
- ProbSR also is least skillful relative to climatology between -2 °C and 0 °C
 - Always reduces error vs. climatology

ProbSR Performance - Precip

- It turned out that the near-zero bias was most present where frozen precipitation was falling
- Impact is maximized between -2 °C and 2 °C surface temperatures, and between 0900 LST and 1600 LST.

Case Study - 1800 UTC 23 Jan 2023

- Snow event across NE
- Rain near coast, snow inland
- HRRR generally captured precipitation type transition well

Case Study - 1800 UTC 23 Jan 2023

- Control version of ProbSR significantly warmer (lower probabilities)
- Black circles subfreezing RWIS observations
 - New ProbSR has 4 higher probabilities where subfreezing 4 roads present

Combining the products – 1800 UTC 17 Feb 2022

Combining the products – 2000 UTC 17 Feb 2022

Before we go...

Two of the products mentioned here are available on our experimental MRMS web viewer! (To access, you be using a NOAA IP address)

https://mrms-dev.nssl.noaa.gov/qvs/vmrms/viewer/

<u>Under "Transportation":</u>

- Spectral Bin Classifier (SBC) Precipitation Type Analysis
- ProbSR (road prob) Probability of Subfreezing Roads Analysis
 - Also available via LDM

<u>Questions? Issues? Comments?</u>

Andrew Rosenow: <u>Andrew.Rosenow@noaa.gov</u>

- Daniel Tripp: Daniel.Tripp@noaa.gov
- Heather Reeves: <u>Heather.Reeves@noaa.gov</u>

Closing Thoughts

- Radar-derived extinction outperforms reflectivity to diagnose snow intensity with simple, prescribed parameters
 - Could use underlying visibility analysis instead of snow intensity
- How you verify impacts what parameters give you the "best" performance
 - Largest # of observations vs. heaviest observations (metrics vs. impacts)
- ProbSR had reduced performance with frozen precipitation falling; including HRRR frozen precipitation in the learn set improved performance

<u>Future work:</u>

- Verify snow intensity using larger off-hour dataset
- How well does snow intensity work with AWOS?
- Can meteorological parameters (moisture, distance from radar, etc.) be used to improve derived visibilities?
- Use technique for FAA-mandated Snow Intensities -> Deicing Holdover Times (AMS 2024!)
- Combine ProbSR and snow rate to address snow accumulation