3D characteristics of snow bands and implications for surface snowfall in Northeast Winter Storms

Sandra Yuter \& Laura Tomkins

Matthew Miller, Luke Allen, Kevin Burris, Declan Crowe, Jordan Fritz, Logan McLaurin, Toby Peele, the NASA IMPACTS Science Team,
\& Brian Colle (Stonybrook U.)

$18^{\text {th }}$ January 2024

Terminology

- Use term "snow" for precipitation-sized ice particle that is large enough to fall in still air
- Distinct from cloud-sized ice
- "age of snow" - time since snow particle first attained precipitation-size
- "microphysical pathway" sequence of d(mass)/dt changes a snow particle undergoes as a function of the sequence of environments it falls through along its path through the storm

Big picture takeaways from multi-year winter storm observations

Low correlation between enhanced Z in "snow bands" detected on regional scanning radar and hourly surface snow rates

Usually observe coincident mixtures of snow particle shapes and degrees of riming

- Mixtures yield varying distributions of shapes, sizes, and densities in the same volume which complicate interpretations and retrievals of snow rate

In the 1-2 hours that it takes a precipitation-sized ice particle to fall from near cloud top to the surface, 3d ice streamers originating in generating cells are tilted and smeared

- Lack of vertical column continuity in local enhancements in radar Z
Ice growth diagram

Hueholt et al. (2022)

Tabular

Branched

Columnar

Ice growth forms

Ice growth form depends on air temperature and vapor content of air.

As particles fall and temperature and vapor content of environmental air changes, growth type can change.

Hueholt et al. (2022, BAMS)

Polycrystaline natural ice, Polycrystals \neq Aggregates

Often get sequences of ice growth in different environments

Same color outlines two views of the same particle

Sequential growth as particle falls to surface can

 yield complex 3D particles

NASA IMPACTS PHIPS images,

2 views of the same particle
initial columnar polycrystalline growth followed by tabular growth then branched growth

Unrimed

Lightly rimed

Different degrees of riming

NASA IMPACTS field project
PHIPS data (Schnaiter)

Graupel

201501240742 00, max diameter 17.8 mm, fall speed $1.33 \mathrm{~m} / \mathrm{s}$

Time-integrated state of individual snow particles

 --everything that happened to particle prior to observation

NASA IMPACTS field program PHIPS particle image (Schnaiter) and ER-2 Cloud Radar (McLinden, Li)

Time-integrated state of set of particles that end up in the same

 volume--Snow particles that initially formed separately often get mixed together

Surface Observations from Multi-Angle Snowflake Camera (NCSU)

Particles with different shapes and degrees of riming often co-occur in the same volume

Mixtures of shapes and degree of riming based on airborne PHIPS ice particle images, minute by minute P-3 Leg 2: 2/26/20 00:27-00:39

Near cloud-top flight leg sample for NASA P-3 closely coordinated with NASA ER-2

Processes that change reflectivity (Z)

In snow, changes in Z do not necessarily mean changes in mass per unit volume

Process	Change to IWC/LWC		
Riming	Increase		
Vapor Deposition	Increase		
Collision-Coalescence	Increase		
Condensation	Increase		
Aggregation	No change		
Melting	No change		
Evaporation	Decrease		
Sublimation	Decrease		
Freezing	No change		
Fragmentation	No change		
Raindrop Breakup	No change	Increase	Increase
:---			

Mapping from volumetric water content to radar reflectivity has much larger uncertainty in snow compared to rain

Stonybrook
University KASPR radar RHI sequence from 1 Feb 2021
(1:1 aspect ratio)

KASPR data courtesy of Mariko Oue and Pavlos Kollias

Snow falls slowly $\sim 1 \pm 0.5 \mathrm{~m} / \mathrm{s}$, takes $\sim 67 \mathrm{~min}$ to fall 4 km

Horizontal wind direction and speed varies with height

Layers with snow have fair amount of time for integrated properties to accumulate

Commonly see wind speed and direction changes with height which can advect ice particles > 50 km in horizontal from origin generating cell

EXAMPLE B: Changing wind direction with changing wind speed

Wind speed (m/s)

Trajectory Height [km]

Flight track
azimuth direction

Illustration of vertical structures associated with horizontal Z features

ER-2 track in green
NEXRAD regional map with low $\mathrm{RHO}_{\mathrm{HV}}$ values (melting regions) in gray scale

Winter storm mesoscale bands in radar reflectivity

- Unlike warm season convective lines
- Some (esp. longer bands) are associated with strong frontogenesis
- Appear as transient features in a fluid rather than static entities moving with the mean flow
- Better defined as local enhancements to dBZ field than as a fixed dBZ threshold

Ganetis et al (2018) analysis of data from 108 cool season storms (1996-2016). Strong frontogenesis increases the likelihood of a single band forming, but these long bands as well as shorter multibands also frequently occur in environments of weak frontogenesis to frontolysis

Ganetis et al. (2018)

Snow bands and surface snow rates

Data: Hourly ASOS surface station data (2012-2023)

1 sample $=1$ hour at 1 ASOS station

ASOS stations with 25 km radius range
NEXRAD stations with 200 km range ring 17,486 total samples over 29 stations and 264 storm days

Criteria:

- Must have reported snow for at least 4 hours
- Only using snow observations with wind speed $<5 \mathrm{~m} \mathrm{~s}^{-1}$ (removes ~40\% of observations)
- Only using stations with AWPAG weighing gauges with wind shields for best LWE measurements of frozen precipitation

Data: NEXRAD regional radar maps

07 Feb 2021

Radar Reflectivity [dBZ]
melting and mixed precip regions removed from analysis Tomkins et
al. (2022)

Snow Rate [mm hr-]

Rescaled Z to better represent snow field using following equation:

$$
Z_{e}=57.3 S^{1.67}
$$

Rasmussen et al. (2003)

Methods: Combining ASOS hourly surface station data and feature detection regional radar maps

07 Feb 2021
06:19:54 UTC Feature Classification

50% coverage of 25 km radius circle for 1 hour

75% coverage of 25 km radius circle for 40 minutes

Most of the time, locally enhanced reflectivity is associated with low snow rates.

Example:

High feature area, heavy snowfall

Example:

High feature area, low/moderate snowfall

Example:

Low feature area, low/moderate snowfall

Example:

Low feature area, High snowfall

Big picture takeaways from multi-year winter storm observations

Low correlation between enhanced Z in "snow bands" detected on regional scanning radar and hourly surface snow rates

Usually observe coincident mixtures of snow particle shapes and degrees of riming

- Mixtures yield varying distributions of shapes, sizes, and densities in the same volume which complicate interpretations and retrievals of snow rate

In the 1-2 hours that it takes a precipitation-sized ice particle to fall from near cloud top to the surface, 3d ice streamers originating in generating cells are tilted and smeared

- Lack of vertical column continuity in local enhancements in radar Z

Further Thoughts

- In regions without distinct upward forcing (e.g. strong frontogenesis, orographic lifting), refrain from labeling as "snow bands" most observed mesoscale linear features of higher reflectivity in winter storms
- Beware of conflating forecast mode/ predictions of locally enhanced snowfall based on ice water contents that are converted to radar reflectivity for display using simple Z-S relations (where there is a 1:1 between increasing snow rate and increasing Z) with observed radar reflectivities

- Suggest better bet for evaluating model predictions of snowfall are hourly surface snowfall liquid equivalent measurements (in non-blizzard conditions) rather than retrievals from observed radar data

