# FV3-LAM-Based CAM Ensemble & Machine Learning Products for the HMT Winter Weather Experiments

Keith Brewster

Nate Snook, Marshall Baldwin, Jun Park, Phillip Spencer, Andrew Berrington, Bryan Carroll & Ming Xue

Center for Analysis and Prediction of Storms University of Oklahoma Norman, Oklahoma



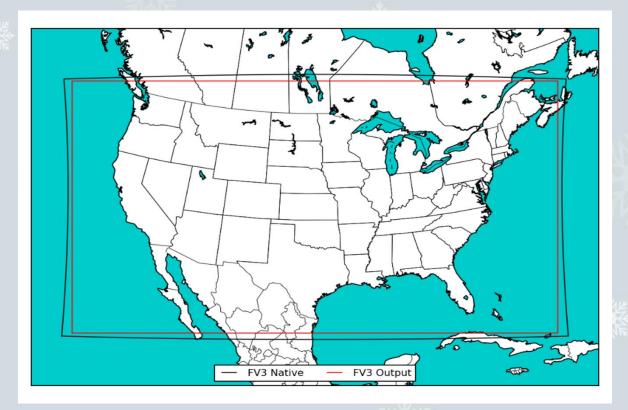
### **CAPS Ensemble Experiment Goals**

- Test FV3 CAM ensemble in quasi-operational winter setting: HMT Winter Weather Experiments
- Generate 15-member CAM ensemble forecast
- Test various physics combinations for possible operational use such as nascent Rapid Refresh Forecast System
- Test and evaluate ensemble consensus methods including Local Probability Matched Mean and Spatial-Aligned Mean
- Develop machine learning (ML) algorithms to create probabilistic rainfall and snowfall forecasts



# Real-time 13<sup>th</sup> WWE (2022-2023) FV3-LAM CAM Ensemble Configuration

- 15 FV3-LAM members
- 3 km grid spacing (GFDL grid)
- 64 vertical levels
- 84-hr forecasts initialized at 00 UTC
- Run at Texas Advanced Computing Center – Frontera
- Total of 30 days run for objective verification and ML training
- Results posted to web: https://caps.ou.edu/forecast/realtime/









## 13th WWE 2022-23 15 Members

Naming

M: Microphysics

**B:** Boundary Layer

L: Land Sfc Model

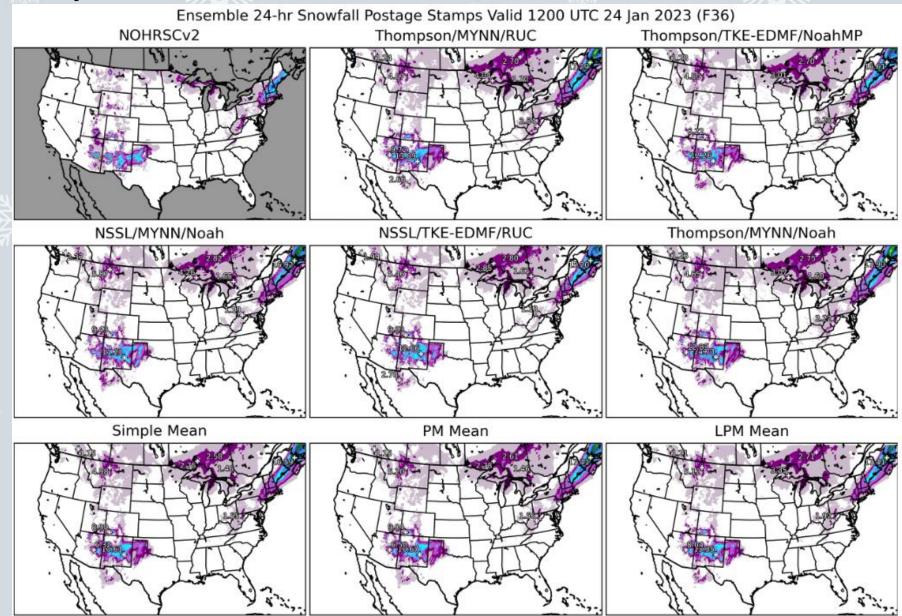
PG: GFS Initial/Bndy Cdx

PI: Initial perturbations

| →>> 0 ×<<                          |              |           |                |               |                         |              |
|------------------------------------|--------------|-----------|----------------|---------------|-------------------------|--------------|
| Experiment                         | Microphysics | PBL       | Surface        | LSM           | IC/LBC<br>(like system) | AI<br>member |
|                                    |              | CESIC     | for Bosolino C | `anfiguration | (like system)           | member       |
| GFS IC for Baseline Configuration  |              |           |                |               |                         |              |
| M0B0L0_PG                          | Thompson     | MYNN      | MYNN           | NOAH          | GFS /GFS (RRFSv0)       | Al-1         |
| M1B0L0_PG                          | NSSL         | MYNN      | MYNN           | NOAH          | GFS/GFS (WoF)           | AI-2         |
| M0B0L2_PG                          | Thompson     | MYNN      | MYNN           | RUC           | GFS/GFS (RRFS)          | AI-3         |
| M1B2L2_PG                          | NSSL         | TKE-EDMF  | GFS            | RUC           | GFS/GFS (Mixed)         |              |
| M0B2L1_PG                          | Thompson     | TKE-EDMF  | GFS            | NOAHMP        | GFS/GFS (GFSv16)        | AI-4         |
| Physics + IC Perturbation Ensemble |              |           |                |               |                         |              |
| M0B0L0_PI                          | Thompson     | MYNN      | MYNN           | NOAH          | GEFS_m1                 |              |
| M0B1L0_PI                          | Thompson     | Shin-Hong | GFS            | NOAH          | GEFS_m2                 |              |
| M0B2L1_PI                          | Thompson     | TKE-EDMF  | GFS            | NOAHMP        | GEFS_m3                 |              |
| M0B0L1_PI                          | Thompson     | MYNN      | MYNN           | NOAHMP        | GEFS_m4                 |              |
| M0B2L2_PI                          | Thompson     | TKE-EDMF  | GFS            | RUC           | GEFS_m5                 |              |
| M1B0L0_PI                          | NSSL         | MYNN      | MYNN           | NOAH          | GEFS_m6                 |              |
| M1B1L0_PI                          | NSSL         | Shin-Hong | GFS            | NOAH          | GEFS_m7                 |              |
| M1B2L1_PI                          | NSSL         | TKE-EDMF  | GFS            | NOAHMP        | GEFS_m8                 |              |
| M1B0L1_PI                          | NSSL         | MYNN      | MYNN           | NOAHMP        | GEFS_m9                 |              |
| M1B2L2_PI                          | NSSL         | TKE-EDMF  | GFS            | RUC           | GEFS_m10                |              |
|                                    | <b>有效</b> 有  |           |                |               |                         |              |

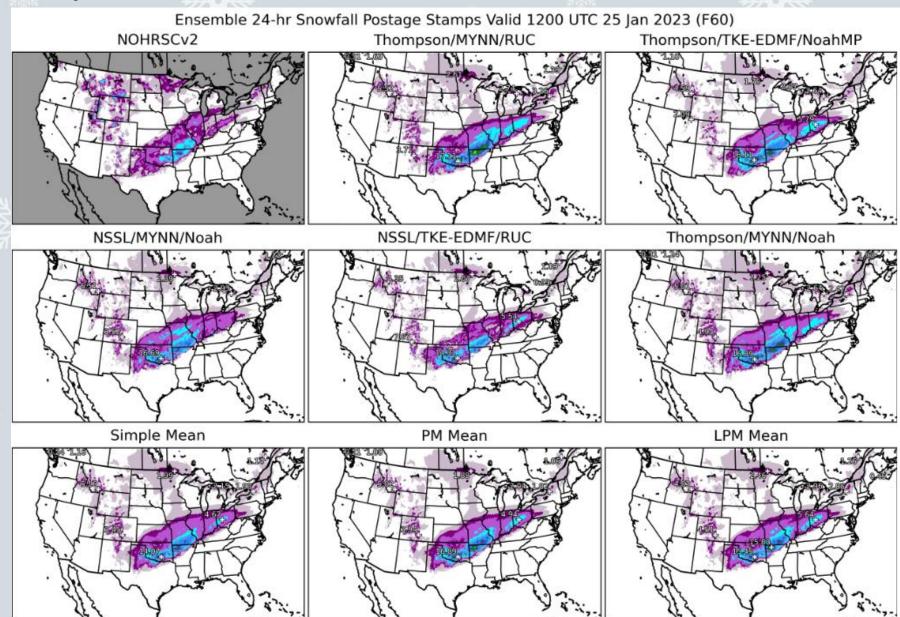


## 24-25 January 2023 Case



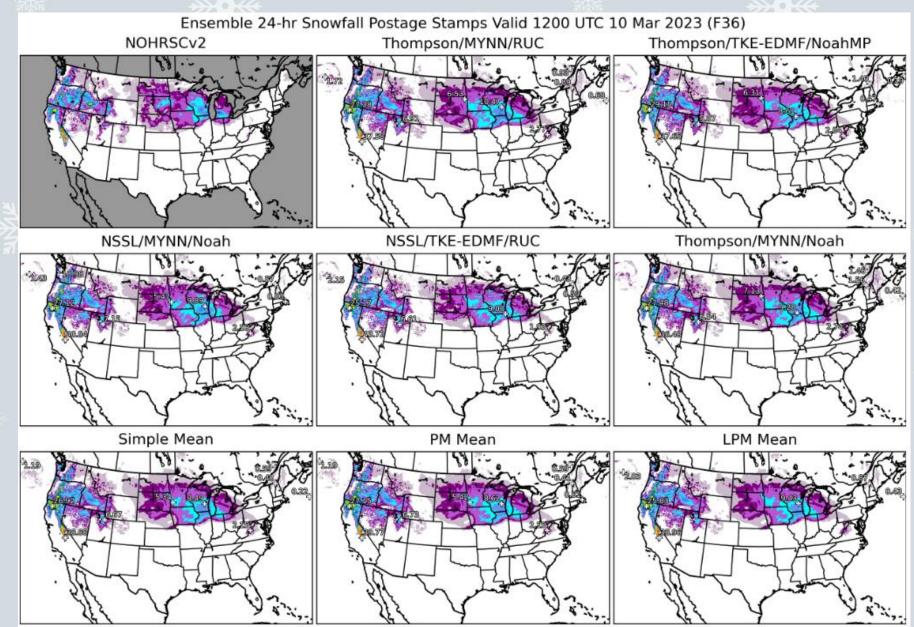


### 24-25 January 2023 Case



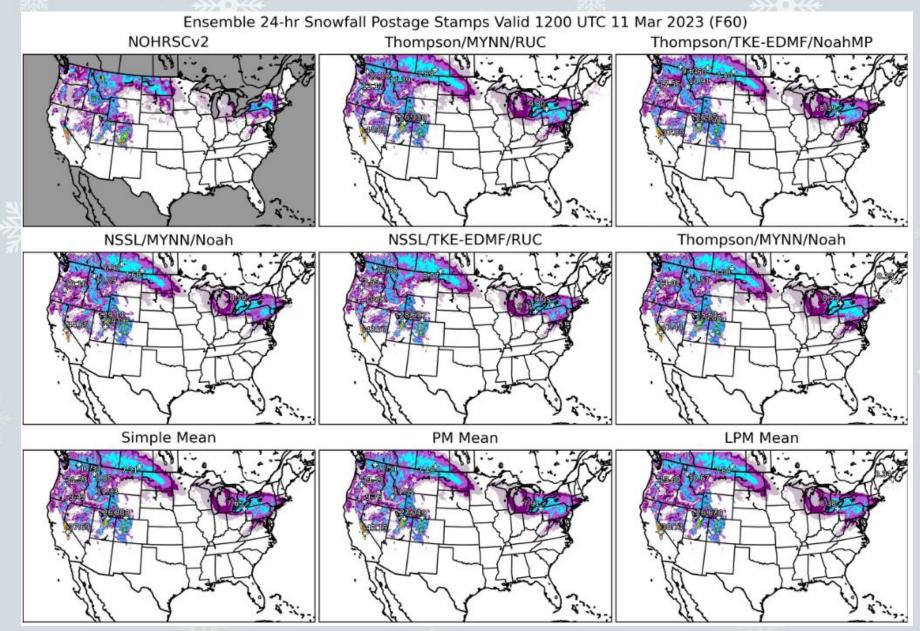


#### 10-11 March 2023 Case





#### 10-11 March 2023 Case



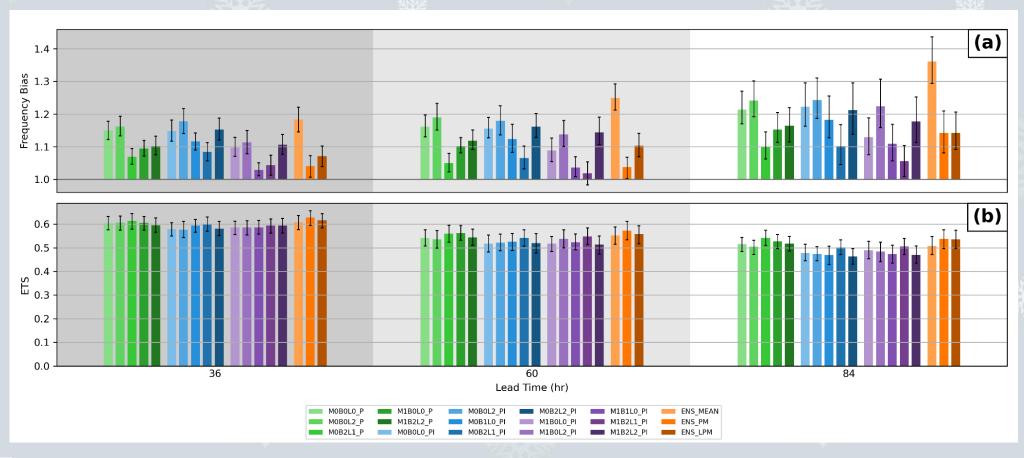


## Verification

- Precipitation: Stage-4 Precipitation
- Snowfall: NOHRSC Snowfall Analysis
- MET-Plus from DTC is used
  - Areal Coverage Bias
  - Equitable Threat Score
  - Various Thresholds at 30 km neighborhood radius



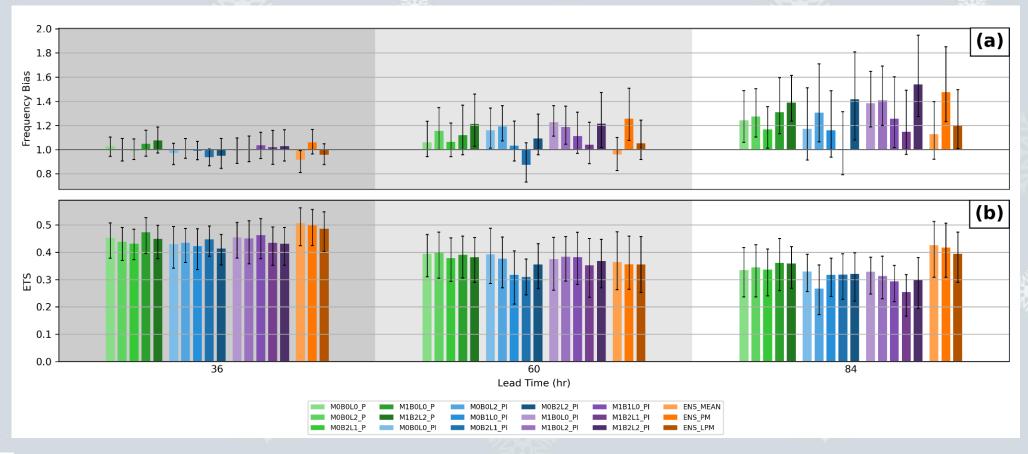
## Verification 24-h Precipitation > 1 mm





Overforecast of precipitation area, varies by member, NSSL generally less biased. ETS scores similar despite differences in bias, ensemble means outperform.

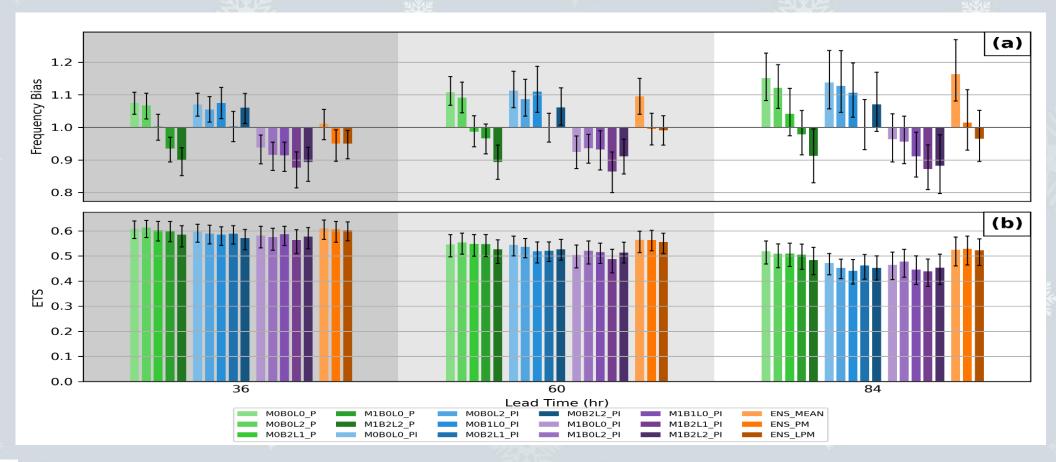
## Verification 24-h Precipitation > 25 mm (1-inch)





Less overforecasting at higher threshold, though some bias at 84 h Ensemble means outperform at near-term (36) and especially longer term (84h)..

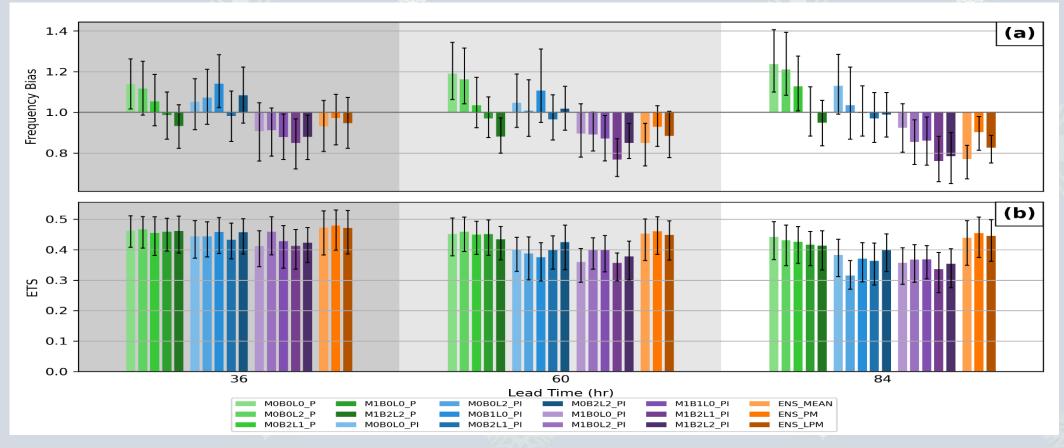
#### Verification 24-h Snowfall > 1 mm





Mixed biases, with low bias in NSSL Microphysics members Less difference among ETS scores, ensembles outperform, esp at 86 h

## Verification 24-h Precipitation > 75 mm (3-inch)





3-inch biases similar to 1 mm with NSSL microphysics slightly low biased ETS scores similar among members with NSSL having slightly lower due to bias and means outperforming, especially at 84 h

## 14th WWE 2023-24 11 Members

Naming

M: Microphysics

**B:** Boundary Layer

L: Land Sfc Model

PG: GFS Initial/Bndy Cdx

PI: Initial perturbations

|     | Experimen t                        | Microphysic<br>s | PBL           | Surfac<br>e | LSM        | IC/LBC<br>(like system) | AI<br>member |
|-----|------------------------------------|------------------|---------------|-------------|------------|-------------------------|--------------|
|     | GFS IC for Baseline Configuration  |                  |               |             |            |                         |              |
|     | M0B0L0_P                           | Thompso n        | MYNN          | MYNN        | NOAH       | GFS/GFS                 | Al-1         |
|     | M1B0L0_P                           | NSSL             | MYNN          | MYNN        | NOAH       | GFS/GFS (WoF)           | AI-2         |
|     | M0B0L2_P                           | Thompson         | MYNN          | MYNN        | RUC        | GFS/GFS<br>(RRFSm1)     |              |
|     | M1B2L2_P                           | NSSL             | TKE-<br>EDMF  | GFS         | RUC        | GFS/GFS<br>(RRFSmphys8) |              |
|     | M0B2L1_P                           | Thompson         | TKE-<br>EDMF  | GFS         | NOAHM<br>P | GFS/GFS<br>(GFSv16)     | AI-3         |
|     | Physics + IC Perturbation Ensemble |                  |               |             |            |                         |              |
|     | M0B1L0_P                           | Thompson         | Shin-<br>Hong | GFS         | NOAH       | GEFS_m1                 |              |
|     | M0B2L1_P                           | Thompson         | TKE-<br>EDMF  | GFS         | NOAHM<br>P | GEFS_m2                 |              |
|     | M0B2L2_P                           | Thompson         | TKE-<br>EDMF  | GFS         | RUC        | GEFS_m3                 | AI-4         |
| 911 | M1B1L0_P                           | NSSL             | Shin-<br>Hona | GFS         | NOAH       | GEFS_m4                 |              |



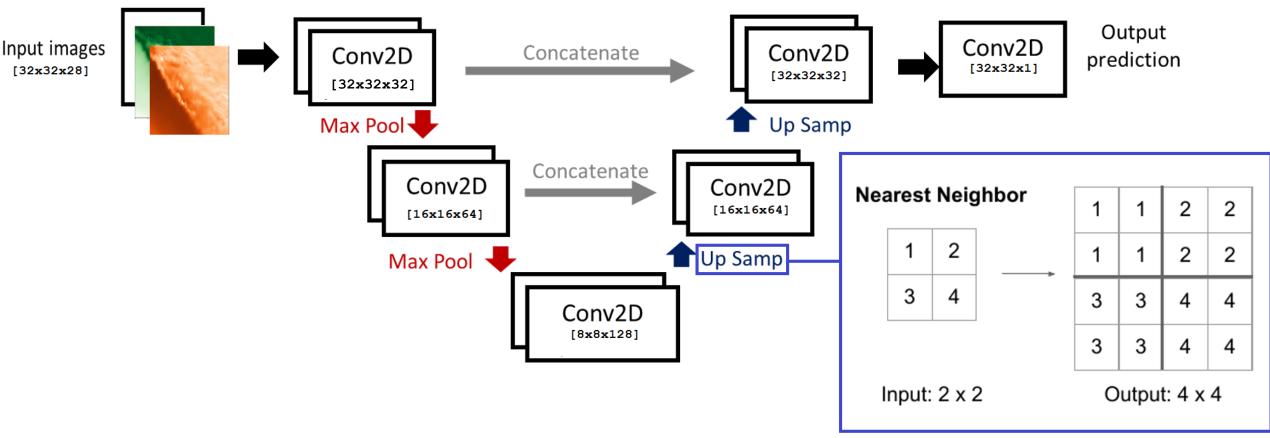


# Machine Learning Component

- Collaboration with NSF AI2ES Institute hosted at OU
- U-Net Convolutional Neural Network (Deep Learning)
- Builds upon ML hail prediction work in HWT (2017-2021) and ML rainfall prediction in HMT FFaIR
- Uses HREF plus 4 CAPS Ensemble Members



- Structure for CAPS FV3 Precipitation & Snowfall U-Net:
  - Patch size, number of connections, and number of layers are being evaluated as hyperparameters (architecture shown below may change in later iterations)





# CAPS U-Net for Rainfall uses 23 2D NWP forecast variables relevant to rainfall prediction

| Variable                        | Level(s) Used              |
|---------------------------------|----------------------------|
| Geopotential height             | 500 hPa                    |
| Temperature                     | 500, 700, 850 hPa; 2 m AGL |
| Dewpoint                        | 500, 700, 850 hPa; 2 m AGL |
| u- and v- wind components       | 500, 850 hPa; 10 m AGL     |
| 6-h maximum reflectivity        | 1 km AGL                   |
| Precipitable water              | column-integrated          |
| Hourly maximum updraft velocity | column maximum             |
| 6-h accumulated precipitation   |                            |
| Echo-top height                 |                            |
| CAPE                            |                            |
| Mean Sea Level Pressure         |                            |
| Terrain height                  |                            |



# CAPS U-Net for **Snowfall** uses **28** 2D NWP **forecast variables** relevant to snowfall prediction

| Variable                               | Level(s) Used                                        |
|----------------------------------------|------------------------------------------------------|
| Geopotential height                    | 500 hPa                                              |
| Temperature                            | 500, 700, 850, <b>925</b> , <b>1000</b> hPa; 2 m AGL |
| Dewpoint                               | 500, 700, 850, <b>925</b> , <b>1000</b> hPa; 2 m AGL |
| u- and v- wind components              | 500 hPa; 10 m AGL                                    |
| 6-h maximum reflectivity               | 1 km AGL                                             |
| Precipitable water                     | column-integrated                                    |
| Hourly maximum updraft velocity        | column maximum                                       |
| 6-h accumulated precipitation          |                                                      |
| 6-h accumulated snowfall               |                                                      |
| Echo-top height                        |                                                      |
| Mean Sea Level Pressure                |                                                      |
| Categorical SNOW, ICEP, FRZR, and RAIN | binary yes/no based on PTYPE at surface              |



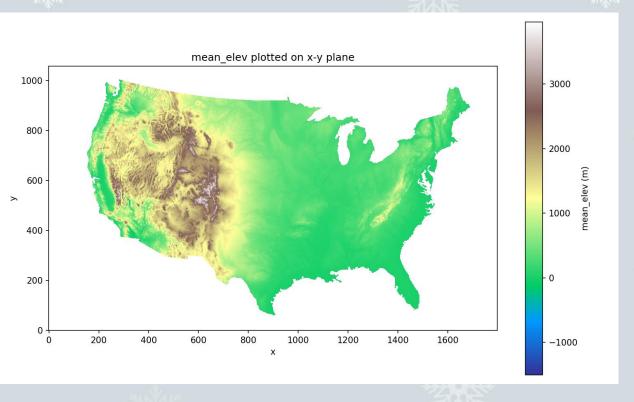
#### New Variables Added to Snowfall U-Net for 2023-24

| Variable                                | Notes/Level(s) Used                          |
|-----------------------------------------|----------------------------------------------|
| Terrain Mean, Standard Deviation, Slope | Source: ASTER Global Digital Elevation Model |
| Vorticity                               | 850 hPa and 500 hPa                          |
| Divergence                              | 850 hPa and 500 hPa                          |
| Moisture Convergence                    | 850 hPa and 10 m AGL                         |
| Land Use Classification                 | Classifications: WSSI Land Use Factor        |

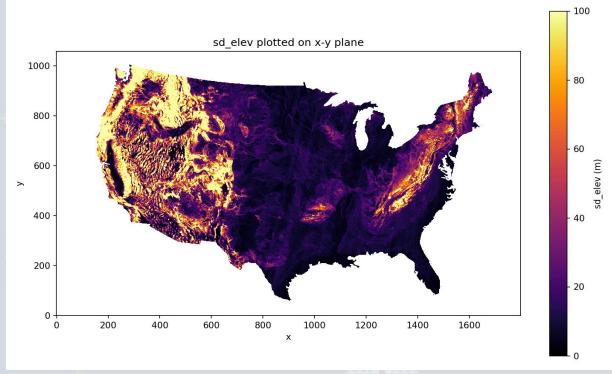


## New Variables, Examples

#### Terrain

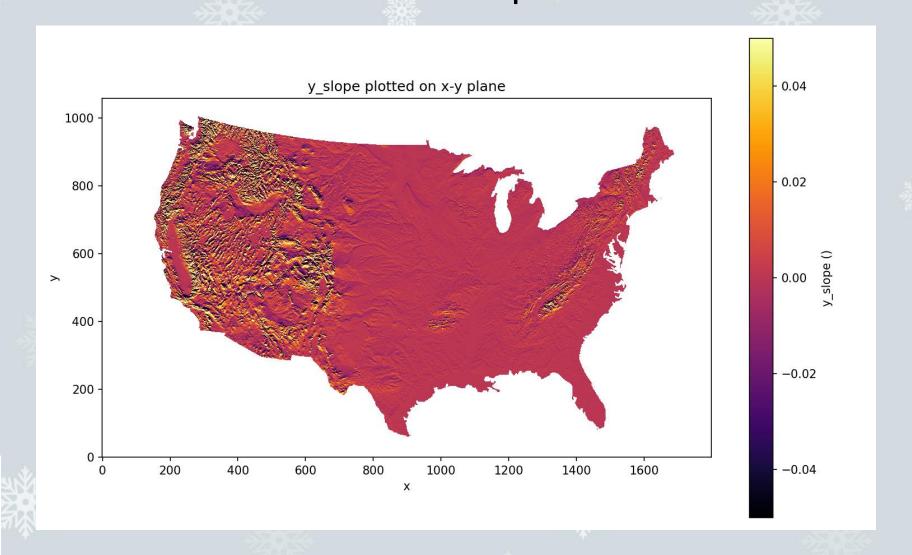


#### **Terrain Standard Deviation**





# New Variables, Examples Terrain Slopes



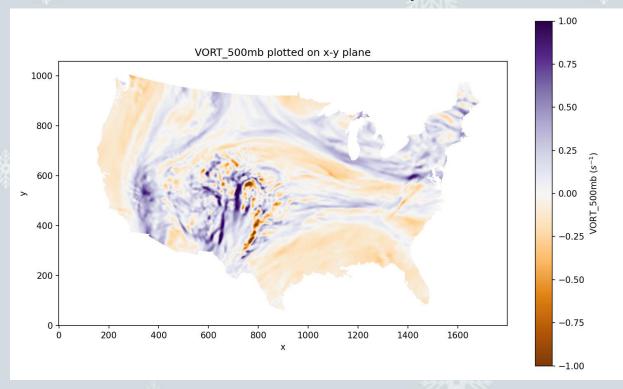


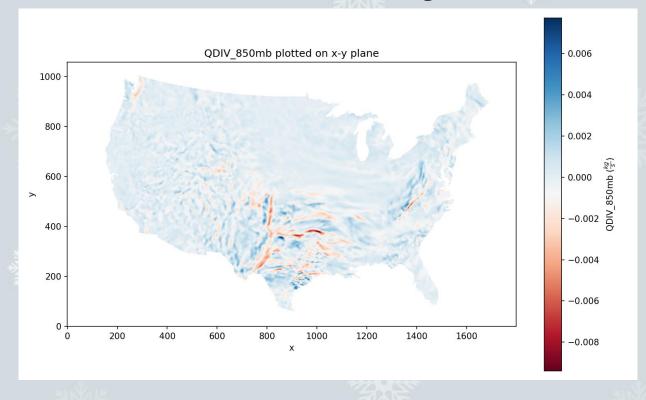
## New Variables, Examples

#### Dynamics – Derived Fields

500 hPa Vorticity

850 hPa Moisture Divergence







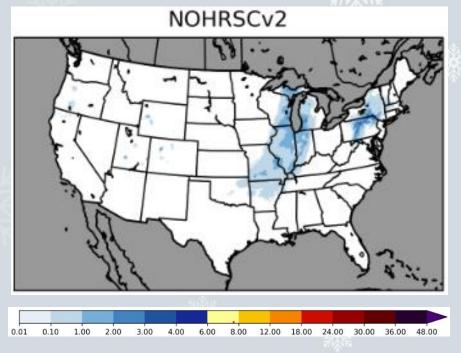
## Data/Methods

- Predict: Probability of 6-h snowfall > 1, 2, and 3 inches.
   Look at snowfall amount internally (experimental for 2023-24)
- Truth for training: NOHRSC snowfall analyses
- Patchwise U-Net predictions on 64 x 64 overlapping grid square patches.
  - Patches are stitched together to form the full CONUS prediction
  - Patch overlap & light smoothing reduces discontinuity at patch boundaries
- Ensemble HREF+ probability is calculated from individual member probabilities using NEP (Neighborhood Ensemble Probability) and NMEP (Neighborhood Max Ensemble Probability) methods.

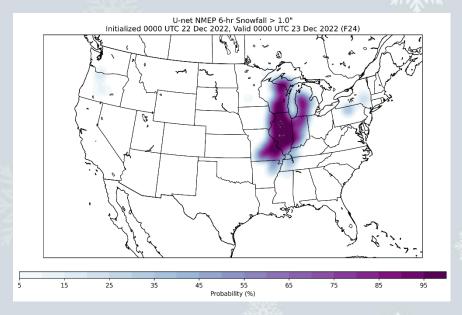


# Example Case: 00 UTC 23 Dec 2022 24 h Fcst

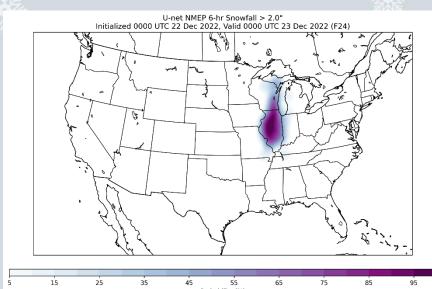
#### NOHRSC 6-h Snowfall Verification



#### NMEP U-net 6-h Snowfall > 1.0 in



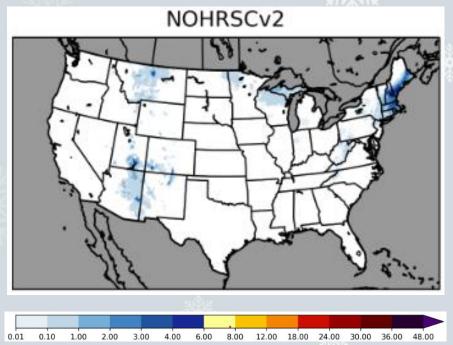
#### NMEP U-net 6-h Snowfall > 2.0 in

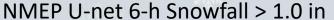


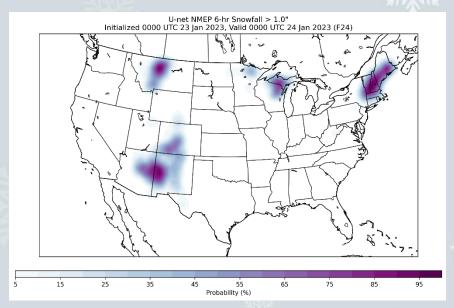


# Case: 00 UTC 24 January 2023 24h Fcst

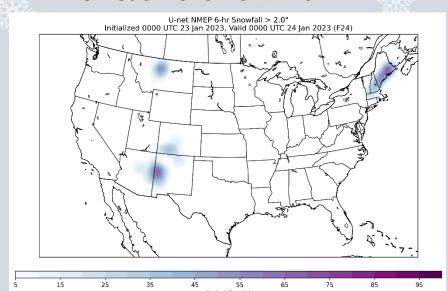
#### NOHRSC 6-h Snowfall Verification







#### NMEP U-net 6-h Snowfall > 2.0 in



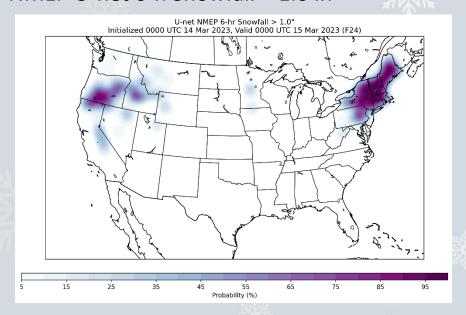


## Case: 00 UTC 15 March 2023 24h Fcst

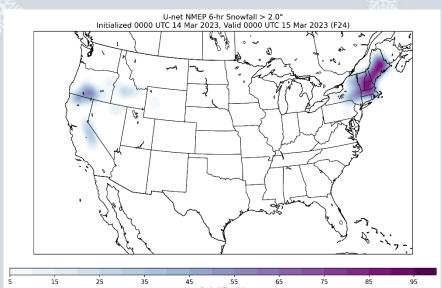
#### NOHRSC 6-h Snowfall Verification



#### NMEP U-net 6-h Snowfall > 1.0 in



#### NMEP U-net 6-h Snowfall > 2.0 in





#### **CAPS ML Status**

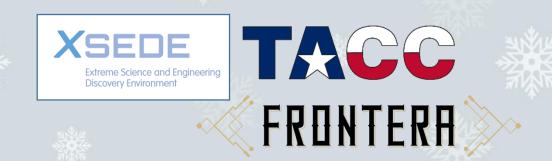
- First iteration CAPS HREF+ U-Net for Snowfall prediction performs reasonably, although much room remains for further improvement and refinement.
- The neighborhood maximum ensemble probability (NMEP) configuration appears to be most suitable compared to NEP.
- We will be evaluating the impact of new derived variables and will be refining the ML algorithm
- After the fact we will look at ML for winter 10-m wind speed forecasts in prep for creating impacts guidance (WSSI).
- More details on ML at Al Conference, AMS 2024 (Baldwin et al.)



#### Conclusions

- All 15 ensemble members appear to capture the spatial patterns of the precipitation rather well.
- For rain/no-rain threshold (≥ 1 mm), all members tend to overforecast for all three lead times.
- For a higher rain threshold (≥ 1 inch), the overforecast appears at longer lead times.
- For both the lower and higher snow thresholds, the NSSL microphysics members (M1\*) tend to underforecast, whereas the other members slightly overforecast.
- The ensemble means generally outperform any single ensemble member for both rain and snow (as measured by the ETS).
- Although further work remains, machine learning (ML) provides a viable companion product for producing probabilistic precipitation forecast guidance.
- CAPS forecast ensemble output (including ML ensemble forecasts): https://caps.ou.edu/forecast/realtime/

## Acknowledgments



#### Computing:

NSF Texas Advanced Supercomputing Center (TACC)
 Frontera

#### Funding:

- NOAA/OAR/OWAC Testbed Grants: NA19OAR4590141 & NA22OAR4590522
- UFS R2O Grant NA16OAR4320115



Keith Brewster

kbrewster@ou.edu

Machine Learning

Nate Snook

nsnook@ou.edu

