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	 A collaborative team of Science and Operations Officers from the National Weather Service (NWS) Weather 
Forecast Offices (WFOs), hydrologists from the Lower Mississippi River Forecast Center (LMRFC), and 
management from the Weather Prediction Center (WPC) worked together to develop and transition a tool into 
NWS operations called the Extreme Precipitation Forecast Table (EPFT). The EPFT was designed to help NWS 
forecasters improve their situational awareness (SA) when heavy rainfall threatens their county warning area. 
The EPFT compares Quantitative Precipitation Forecasts (QPF) to Average Recurrence Intervals (ARIs) from 
the NOAA Atlas-14 to alert forecasters to the potential for climatologically significant and extreme rainfall. 
A counterpart to the EPFT, called the Extreme Precipitation Assessment Table (EPAT), compares observed 
precipitation (i.e., Quantitative Precipitation Estimates [QPE]) to inform forecasters as to the climatological 
significance of impactful rain events. This paper presents cases demonstrating the usefulness of the EPFT and 
EPAT in helping forecasters improve their SA in real-time operational settings when heavy rain was a threat. 

ABSTRACT

(Manuscript received 15 July 2019; review completed 29 June 2020)

1.	 Introduction

	 When extreme rainfall is a threat, National 
Weather Service (NWS) forecasters are faced with 

both scientific and societal challenges when creating a 
forecast for public dissemination. Many of the scientific 
challenges arise prior to the event when the forecaster 
is sifting through large quantities of atmospheric data 
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to make an accurate assessment of where, when, and 
how much precipitation is expected to fall. At any 
given moment, they have multiple numerical weather 
prediction models (NWP; see Appendix A for a list of 
key acronyms used in this paper) providing quantitative 
precipitation forecasts (QPF) down to hourly resolution 
in the short-term forecast (i.e., ≤1 day), 3-hourly 
in the extended short-term forecast (1-2 days) and 
6-hourly in the long-term forecast, (3-7 days), which 
in some models can be available in the extended long-
term forecast (8-10 days). Each NWP model contains 
additional information on the atmospheric ingredients 
that are known to initiate or enhance extreme rainfall 
including: the presence of a mid-tropospheric potential 
vorticity anomaly or meso-α trough, weak-to-moderate 
vertical wind shear, strong warm-air advection, high 
precipitable water, high surface dew points, high values 
of low- to mid-level equivalent potential temperature, 
moderate convective available potential energy, and 
low convective inhibition (Maddox et al. 1979; Doswell 
et al. 1996; Davis 2001; Trier et al. 2006; Jessup and 
DeGaetano 2008; Schumacher and Johnson, 2008, 
2009; Graham and Grumm 2010; Schumacher et al. 
2011; Stevenson and Schumacher 2014). Assessing 
a large volume of data while often under strict time 
constraints is a challenge that can easily be exacerbated 
when NWP models are in substantial disagreement with 
one another. This is usually the case when the forecasted 
rainfall is on the extreme end of the spectrum and 
when models with significant differences in resolution 
are being compared (Herman and Schumacher 2016). 
In addition, the full potential for flooding cannot be 
assessed without further considering the characteristics 
of the watershed and antecedent conditions, such as 
soil moisture and vegetation coverage (e.g., Jessup and 
DeGaetano 2008).
	 Despite the abundance of data available, 
several NWS service assessments from impactful 
hydrometeorological events have highlighted that there 
are a lack of datasets to help forecasters recognize the 
potential for extreme events. Furthermore, there are even 
fewer products that help forecasters place the magnitude 
of the situation into a meaningful context for decision 
makers. For example, the Southeast United States 
Floods 2009 service assessment found that forecasters, 
emergency managers (EMs), and residents did not 
recognize the magnitude or severity of the forecast 
until the flood event was well underway (NWS 2010). 
Another finding that came from this service assessment 
is that despite the use of Flash Flood Guidance 

(FFG), the Flash Flood Monitoring Prediction System 
(FFMP), and radar precipitation estimates, forecasters 
had limited historical context or tools to utilize that 
would help put this information into a climatological 
perspective. Prior to the South Carolina 2015 floods, 
when the forecast called for 20+ in of rain, residents 
could not comprehend what this meant specifically 
to them because they lacked a point of reference to 
compare with this event or a way to visualize it (NWS 
2016). In this case, there were no analogs or tools to 
place the forecast within a historical context that the 
public could understand. These examples illustrate 
where the scientific challenges (e.g., model uncertainty 
or model performance during extreme events) start to 
blend in with the societal challenges (e.g., decision 
support messaging or difficulty of communicating 
extreme events) when extreme hydrometeorological 
events occur. Once the forecaster has determined where, 
when, and how much rain is expected, they then have to 
figure out how to effectively convey the magnitude of 
the event as well as the potential impacts to their core 
partners.
	 Within the last few years, addressing the societal 
challenges has become the forefront of the forecaster’s 
job duties in the NWS as the agency has started to focus 
on Impact-Based Decision Support Services (IDSS). 
The concept of IDSS allows the forecaster to give advice 
and interpretative services to help core partners, such as 
emergency personnel and public safety officials, make 
decisions when weather, water, and climate impacts the 
lives and livelihoods of the American people (NOAA 
2018). Among the most common hazards from extreme 
rainfall is flooding. Long-term flooding from multi-day 
storms can lead to massive infrastructure damage and 
billions of dollars in costs (NCEI 2019). Flash-flooding 
from a rapid onset of extreme rainfall can result in 
fatalities due to the more unpredictable nature in both 
the meteorological processes and hydrologic response 
(Ashley and Ashley 2008; Gourley and Clark 2018). 
FFG, which is commonly used in NWS operations, takes 
into account soil characteristics but has deficiencies that 
have been well documented. FFG is only valid for 24 hrs 
or less (Reed et al. 2007; Clark et al. 2014; Gourley and 
Clark 2018) and has significant spatial discontinuities 
that exist on River Forecast Center (RFC) boundaries 
resulting from different methods used in the NWS to 
derive gridded FFG values (Ortega et al. 2009). Some 
RFC boundaries divide county warning areas so that a 
Weather Forecast Office (WFO) could be covered by 
very different FFG values and very different methods 
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of FFG generation (Gourley and Clark 2018). FFG also 
does not necessarily help convey the full magnitude of 
a hydrometeorological event (NWS 2016), because it 
only represents the amount of rainfall needed to reach 
bankfull conditions. If forecasters are to improve their 
situational awareness (SA) for effective decision support 
when extreme rainfall is a threat, they need to have 
tools that can leverage large amounts of data, facilitate 
the identification of extreme rainfall in the forecast, and 
help them convey the information within a meaningful 
context that their core partners can understand. This is 
necessary so that in spite of uncertainty in the models 
and underlying ground conditions, they can still properly 
inform decision makers on the risks and impacts.
	 The Extreme Precipitation Forecast Improvement 
Project was established in 2015 to help provide a 
solution to remediate some of the issues highlighted 
in the NWS service assessments mentioned above. 
The project was pursued by a regionally diverse team 
of science and operations officers from local WFOs, 
forecast managers from the Weather Prediction Center 
(WPC), and hydrologists from the Lower-Mississippi 
River Forecast Center (LMRFC). The main objective 
of the project was to integrate new datasets and tools 
into NWS operations that can help forecasters identify 
climatologically significant and/or extreme rainfall in 
the forecast for improved SA and IDSS.
	 This paper will describe the efforts made by the 
team to fulfill the objective outlined above, which 
largely consisted of providing tools called the Extreme 
Precipitation Forecast Table (EPFT) and Extreme 
Precipitation Assessment Table (EPAT) to forecasters 
and hydrologists in the NWS. The EPFT and EPAT are 
situational awareness tables designed to help forecasters 
identify climatologically significant and extreme 
rainfall using Average Recurrence Interval (ARI) data 
from the NOAA Atlas-14. Section 2 describes the 
NOAA Atlas-14 dataset and methods used to design 
and implement the EPFT and EPAT in NWS operations. 
Cases where these tools provided enhanced SA in real-
time forecast settings are presented in section 3. The 
paper concludes with a discussion in section 4.

2.	 Data and method

	 It has been shown that SA tables that highlight 
important threshold exceedances can facilitate the 
identification of significant features and hazards in 
the forecast (Graham et al. 2013). SA tables organize 
weather data into 2-D matrices, usually with forecast 

time in one direction and either forecast model or 
parameter in the other. Values are generally color-
coded to alert forecasters when significant thresholds 
are reached. The Ensemble Situational Awareness Table 
(ESAT), originally developed at WFO Salt Lake City 
and now hosted by WPC (satable.ncep.noaa.gov), is an 
SA table that has been proven effective at highlighting 
extreme events in the forecast (Graham et al. 2013). 
Following the success of the ESAT, the EPFT was 
designed to facilitate detection of extreme precipitation 
events by comparing QPF from NWP models and other 
sources of guidance to ARIs from the NOAA Atlas-14. 
The EPAT is designed similarly to the EPFT but instead 
compares quantitative precipitation estimates (QPE) to 
ARIs to indicate when a climatologically significant 
rainfall event has been observed.
	 An ARI represents the average amount of years 
between precipitation threshold exceedances over a 
specific duration, or accumulation period, at a given 
location. The NOAA Atlas-14 contains precipitation 
frequency estimates (PFEs) based on a 90% confidence 
interval for ARIs from 1 to 1000 yrs and durations 
of five minutes up to 60 days (Bonnin et al. 2004). 
Gridded PFEs spanning the entire Continental United 
States (CONUS) for ARIs of 1-, 2-, 5-, 10-, 25-, 50-, 
and 100-yrs for rainfall durations of six and 24 hrs are 
incorporated into the EPFT and EPAT. The grids are filled 
with NOAA Atlas-14 where complete, which include all 
United States regions except for Texas and the Pacific 
Northwest (i.e., Washington, Oregon, Idaho, Montana, 
and Wyoming). Texas and the Pacific Northwest are 
supplemented with estimates from NOAA Technical 
Paper 40 (Hershfield 1961) and NOAA Atlas-2 (Miller 
et al. 1973). Details on how the nationally mosaiced ARI 
grids were constructed are contained in Herman and 
Schumacher (2016). It is important to note, however, 
that the ARI datasets incorporated into each national 
mosaic are developed with many decades of gauge data 
based on the availability and density of historical data 
in each region and may be subject to under-sampling 
from the use of gauge data alone. This is more likely 
to occur in rural areas, areas of complex terrain, and 
within the older ARI datasets. For example, Herman 
and Schumacher (2018) pointed out that ARI thresholds 
in Wyoming are likely too low from the NOAA Atlas-2 
when compared with the updated NOAA Atlas-14 values 
in bordering states. They speculated that some areas of 
Wyoming are likely inaccurate and highly uncertain 
due to this region being historically rural, especially at 
the time the threshold estimates were derived. The ARI 
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thresholds in Texas obtained from Technical Paper 40 
are also considerably more uncertain than the recently 
updated NOAA Atlas-14 grids released in 2018. 
Although the updated ARI thresholds contain data from 
recent landfalling tropical cyclones, there are several 
precipitation bullseyes along the Texas Gulf coast that 
are not apparent in the Technical Paper 40 datasets. 
Thresholds from the NOAA Atlas-14 for ARIs greater 
than 100 yrs are also highly uncertain because there are 
little reliable gauge data going back more than 100 yrs. 
In the EPFT and EPAT, rainfall comparisons are limited 
to the 100-yr ARI due to the uncertainty in higher ARI 
thresholds.
	 For more than half a century, ARIs for specific 
durations of rainfall have been used in the hydrologic 
design of flood-prevention systems in the United States 
(Hershfield 1961; Lopez-Cantu and Samaras 2018). The 
ARI thresholds significant in this respect are associated 
with PFEs that when integrated within hydrologic 
models that consider the characteristics of a watershed, 
would lead to hydrographs and peak discharges that 
would result in runoff and inundation of water-control 
structures (Merkel et al. 2015). ARI thresholds used 
to define hydrologic design standards can vary across 
cities and municipalities and depend on the type of 
structure, drainage area, and risk of failure. In general, 
larger structures that pose a loss of life, like dams and 
levees in urban areas, are designed to withstand peak 
flows associated with at least the 100-yr ARI for a 24-hr 
duration event (Mays 2011; USDA 2020). The merit in 
using ARIs for IDSS is that forecasters can get a sense 
of potential impacts if they have knowledge of the ARI 
thresholds used in the design of hydrologic structures in 
their county warning area (CWA). Although research is 
limited, some studies have linked certain ARI threshold 
exceedances to reports of flash flooding and resulting 
impacts (e.g., Lincoln and Thomason 2018; Herman 
and Schumacher 2018).
	 The default configuration of the EPFT and EPAT 
compares the precipitation to the 100-yr ARI, which 
is an operationally acceptable threshold to define an 
extreme precipitation event. The values within the 
EPFT represent the maximum ratio of QPF to the 100-
yr ARI threshold (QPF/ARI100) for a user-specified 
duration and area of interest. The ratio is converted to 
a percentage and color-coded in the table based on the 
level of QPF/ARI exceedance (or non-exceedance). The 
EPFT in Fig. 1a shows QPF/ARI100 for a 24-hr duration 
rainfall capturing the QPF forecast from Hurricane 
Harvey, initialized at 2200 UTC 26 August 2017. When 

QPF from models with temporal resolutions less than 
six hrs are compared, the EPFT will sum the values to 
create 6- and 24-hr accumulations for a proper QPF/ARI 
comparison. If 24 hrs of QPF data are not available, the 
table will not display results. The user can select a cell 
within the table, which then displays the grid of QPF/
ARI100 percentages (or QPE/ARI100 within the EPAT) 
to allow for further investigation into the location(s) 
at risk. They can view QPF guidance contoured in the 
context of ARIs from 1 to 100 yrs, as well as the QPF 
and ARI grids used to calculate the ratios from the 
EPFT’s user interface.
	 A key for interpreting the EPFT with the default 
configuration (i.e., 100-yr ARI) was provided to NWS 
forecasters to facilitate analysis of the results (Fig. 1b). 
The key was designed based on several post-storm 
event analyses conducted out of the State College, 
Pennsylvania WFO (Grumm 2016a, 2016b). A case 
study of the southern United States heavy rain and floods 
of March 2016 found that the GFS (see Appendix B for 
a list of model abbreviations) produced QPF/ARI100 
ratios between 75% and 100% of the 100-yr ARI for 
24-hr duration rainfall, with nearly all 24-hr forecasts, 
initialized starting at 0000 UTC 7 March and valid for 
the period ending 1800 UTC 9 March, capturing at least 
50% of the 100-yr ARI. According to QPE from the 
NCEP Stage IV Precipitation Analysis product (Stage 
IV; Lin and Mitchell 2005), QPE/ARI100 ratios were 
between 125 and 150% for the 24-hr observed rainfall 
ending 1800 UTC 9 March. An analysis of the historic 
West Virginia floods of June 2016 (Grumm 2016b) 
showed similar results, with the wettest runs of the 
GFS barely exceeding 75% of the 100-yr ARI for 24-
hr duration rainfall, whereas QPE comparisons verified 
with ratios closer to 125%. A main finding uncovered 
from both studies is that the GFS, like many other 
models that use cumulus parameterization schemes 
rather than explicitly solving for convection, has 
difficulty producing extreme QPF amounts in localized, 
strongly forced events. Herman and Schumacher 
(2016) similarly found that the GEFS mean QPF rarely 
predicts 100-yr events, whereas QPF from the HRRR 
and WRF-NSSL verify much better with observed 100-
yr exceedances of 6-hr duration rainfall. It follows that 
the forecaster should have heightened awareness to 
the potential for an extreme event, and thus damaging 
impacts to life and property, when QPF/ARI100 values 
within the table start to near or exceed 75%. The key 
does not account for the areal extent of the precipitation 
system or the antecedent conditions, which are both 
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important aspects that need to be considered when 
determining potential impacts from extreme rainfall. In 
addition, the key is only applicable to QPF comparisons 
with the 100-yr ARI. Although there is the ability in 
the EPFT to compare QPF with lower ARI thresholds, 
additional studies would need to be completed to refine 
the key and facilitate analysis of the results.
	 The EPFT and EPAT are available to NWS 
forecasters at all CONUS-wide WFOs, RFCs, and the 
Weather Prediction Center via the Advanced Weather 
Interactive Processing System (AWIPS). The value in 
using AWIPS to host the EPFT is that it allows NWS 
forecasters and hydrologists to take advantage of the 
maximum amount of QPF guidance available for a 
streamlined assessment of when and where extreme 
precipitation could be a threat. AWIPS has the unique 
ability for tools to be created that can leverage large 
amounts of model data as well as guidance from nearby 
WFOs, RFCs, and WPC for enhanced collaboration and 
coordination during the forecast generation process. 

	 In the next section, we will demonstrate cases where 
the EPFT and EPAT enhanced situational awareness in 
real-time operational settings.

3.	 Operational use-cases

	 a.	 Anticipating an atmospheric river event

	 An atmospheric river impacted southern California 
during 21–23 March 2018. The NWS San Joaquin 
Valley/Hanford Office (HNX) was at risk for heavy 
rainfall from this event, and with the prevalence of 
burn scars in their CWA, was concerned about the 
possibility of mudslides and flood impacts. A forecaster 
at HNX initialized the EPFT on 1900 UTC 20 March 
2018, comparing 6-hr QPF from 20 different sources of 
guidance to the 100-yr ARI (Fig. 2a). Using the metric 
that QPF/ARI100 ratios exceeding 75% are indicative that 
an extreme rainfall event is possible, the EPFT allowed 
the forecaster to key in on the timeframe 0000–0600 
UTC 22 March 2018, corresponding to Wednesday 
afternoon/evening. Several models forecasted 6-hr 
rainfall exceeding 75% of the 100-yr ARI, including the 
HIRESWarw, HIRESWnmm, NAM12, and GFS1hr. The 
24-hr comparison showed five QPF sources, including 
WPCGuide, exceeding 75% of the 100-yr ARI (Fig. 2b). 
A plot of the ratios generated from the HIRESWnmm 
valid at 0000 UTC 22 March shows an example of 
where some of the higher values were located (Fig. 3a). 
The HNX forecaster indicated that flood impacts (e.g., 
road wash-outs, mudslides) could have been possible if 
the storm cell in the HIRESWnmm moved over one of 
the many burn scars in the CWA. The burn scar from 
the 2017 Detwiler fire was of particular concern, and 
the grid generated from the CMCnh during 0000 UTC  
 

Figure 1. a) EPFT Initialized at 2200 UTC 26 August 
2017 showing the max QPF/ARI100 ratio associated 
with the QPF forecasts from Hurricane Harvey (i.e., 
TX/LA domain). See Appendix B for a list of model 
abbreviations and descriptions. b) The following key was 
provided to NWS forecasters to help identify significant 
values in the table. Click image for an external version; 
this applies to all figures and hereafter.

Figure 2. EPFT initialized at 1900 UTC 20 March 2018 
showing QPF/ARI100 over the HNX CWA for a) 6-hr 
and b) 24-hr duration rainfall. 

http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig1.jpg
http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig2.jpg
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22 March to 0000 UTC 23 March shows QPF/ARI100 
values exceeding 75% in and around the area (Fig. 3b).
	 This information consolidated in the EPFT helped 
the forecaster to craft their message when informing 
core partners of the risk imposed by the atmospheric 
river event in their CWA. Here is a quote from the 
forecaster regarding the event: 

		  The EPFT showed the potential for heavy  
		  rainfall and sufficient rainfall rates to produce  
		  flooding over the Detwiler Burn Scar,  
		  associated with a narrow cold frontal rainband  
		  that was fed by an atmospheric river on March  
		  22, 2018. The enhanced situational awareness  
		  provided by the tool helped the NWS  
		  Hanford office communicate potential flood  
		  impacts with several hours of lead time for  
		  Mariposa County emergency managers. This  
		  allowed an elementary school to be evacuated  
		  in a timely manner. Potential flood impacts were  
		  also conveyed to the NWS Western Region  
		  Regional Operations Center and the California  
		  Governor’s Office of Emergency Services,  
		  which ultimately aided decision making on a  
		  state-wide scale.

	 Through personal communication, the forecaster 
indicated that it was a wet year, so that antecedent 
conditions lowered the ARI thresholds they considered 
important while assessing the EPFT values.

	 SA was additionally enhanced due to the 
forecaster’s previous use of the EPFT to self-calibrate 
their own awareness toward the values in the EPFT that 
are significant for impacts. During the 2017 wet season, 
the forecaster ran the EPFT at 2200 UTC 6 February 
2017, comparing QPF to the 50-yr ARI (QPF/ARI50) 
for a 6-hr duration rainfall (Fig. 4a). Several pieces 
of guidance (i.e., GFS, HIRESWarw, HIRESWnmm, 
MOSGuide) had indicated that there was potential for 
a 50-yr ARI event to occur somewhere within the HNX 
CWA between 1200 UTC 7 February and 0000 UTC 
8 February 2017. The event verified with 6-hr rainfall 
closer to a 25-yr ARI according to Stage IV QPE (Fig. 
4b), which had led to local storm reports of flooded 
roadways and roads blocked from rockslides and 
landslides during the same period.
	 Regarding the 21–23 March 2018 atmospheric 
river event, knowledge of other risk factors like high 

Figure 3. Select images generated from the EPFT in 
Fig. 2 displaying the spatial extent of the QPF/ARI100 
values from the a) 6-hr HIRESWRFnmm valid starting 
at 0000 UTC 22 March 2018 (max=95%) and b) 24-
hr CMCnh valid starting 0000 UTC 22 March 2018 
(max=126%). The magenta outline depicts the bounds 
of the Detwiler burn scar. 

Figure 4. a) The EPFT initialized at 2200 UTC 6 
February 2017 showing the max QPF/ARI50 over 
the HNX CWA. b) Observed 6-hr ARI threshold 
exceedances according to Stage IV QPE valid starting 
at 1200 UTC and 1800 UTC 7 February 2017. 

http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig3.jpg
http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig4.jpg
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soil moisture and burn scars and previous experience 
correlating specific ARI thresholds with impacts in the 
HNX CWA were all necessary so that the forecaster 
could deliver effective decision support in a timely 
manner.

	 b.	 Enhanced situational awareness at LMRFC

	 On 22 October 2017, a slow-moving mesoscale 
convective system (MCS) fed by anomalously moist, 
low-level confluent flow had impacted south-central 
Louisiana and southern Mississippi with heavy rain 
and flash flooding. An LMRFC hydrologist ran the 
EPAT and EPFT during the event to assess how each 
tool could be used to enhance situational awareness 
for this particular event. Prior to running the EPAT, the 
hydrologist was aware that 8–11 in of rain fell overnight 
(in about six hrs), which caused a major highway to 
flood. A social media post from the Louisiana State 
Police was provided showing a picture of a flooded 
road and detour information (Fig. 5a). Consequently, by 
running the EPAT the hydrologist was able to identify 
the ARI-equivalent rainfall amounts that corresponded 
to the impacts shown in Fig. 5a. During the 0000–0600 
UTC and 0600–1200 UTC periods on 22 October, 
several QPE observing sources within the EPAT (Fig. 
5b) indicated that rainfall had exceeded the 10-yr ARI 
from the MCS that had anchored itself over south-
central Louisiana (Fig. 5c).
	 In regard to the values in the EPAT, the hydrologist 
stated:

		  Given the impacts from the previous 12 hours,  
		  the EPAT had provided guidance for what  
		  impacts could be expected if convection  
		  associated with this system continued to  
		  produce 10-yr ARI threshold exceedances, let  
		  alone 100-yr ARI exceedances. 

	 The hydrologist initialized the EPFT at 1700 
UTC 22 October, which had shown the HRRR and 
HIRESWnmm forecasting rainfall exceeding the 
100-yr ARI over the next 6-hr period (Fig. 6a). The 
hydrologist noted that both models depicted a band of 
100-yr ARI rainfall moving into southern Mississippi 
(e.g., Fig. 6b), which include drainages that feed the 
Biloxi and Wolf Rivers. Given the additional situational 
awareness provided by the EPFT and EPAT, the 
hydrologist was confident in their decision to put out 
forecast hydrographs for gauges on the Biloxi and Wolf 

Rivers that are shown reaching Flood stage (Fig. 7a) 
and Action stage (Fig. 7b), respectively.
	 The hydrologist further commented that except in 
areas of steep terrain, the 10-yr ARI threshold is often 
defaulted to when using the EPFT. With the exception 
of land-falling tropical cyclones, higher ARI threshold 
exceedances are rarely observed within their forecast 
area. From using EPAT, they found that the 10-yr 
ARI has the most benefit in capturing flood impacts, 
especially in areas less than 200 mi from the Gulf of 
Mexico coast. In this area, the terrain is flatter, leading 
to poor drainage and ponding of water. In areas of 
steeper terrain, they look for 25-yr ARI exceedances 
within the EPFT. Because of the terrain changes 
within their forecast area of responsibility, the rainfall 
durations used are dependent on the response of local 
creeks, streams and tributaries. In steeper terrain, ARIs 
associated with shorter durations of rainfall (i.e., <6 
hrs) are a better indicator of flooding, whereas ARIs 
associated with longer durations (i.e., ≥6 hrs) are more 
widely used along the coast and locations just inland.

Figure 5. From an MCS-driven heavy-rain event that 
occurred 22 October 2017: a) LA state police reported 
road closures from a flash flood on social media. b) 
The EPAT corresponding to the event had shown 6-hr 
QPE exceeding the 10-yr ARI threshold according to 3 
QPE observing sources starting at 00 UTC and 2 QPE 
sources starting at 06 UTC. Shown in c) are the 6-hr 
QPE/ARI10 gridded ratios from the MPE valid starting 
at 00 UTC 22 October. 

http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig5.jpg
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4.	 Summary and discussion

	 The Extreme Precipitation Forecast Improvement 
Project developed and transitioned situational 
awareness tools into NWS operations for the purpose 
of improving situational awareness and IDSS for 
impactful hydrometeorological events. The EPFT 
allows forecasters to compare multiple sources of 
QPF guidance to ARI threshold exceedances to alert 
them to when the models are predicting an extreme 
or climatologically significant precipitation event, 
whereas the EPAT helps them to identify when a 
climatologically significant precipitation event has 
been observed. Continual use of the EPAT will allow 
offices to calibrate their ARIs to impacts and enhance 
the use of the EPFT as an effective SA Tool.
	 Two use-cases are presented where the EPFT 
and EPAT helped improve situational awareness and 
had implications to IDSS during heavy rain events 
associated with an atmospheric river in California and 
an MCS in the southeastern United States. There were 
key similarities between how the tools were used in 

each event that made it effective: 1) Previous use of the 
EPFT and/or EPAT was necessary to get a sense of the 
impacts that can result when different ARI thresholds 
are exceeded; 2) Recognition of multiple sources of 
guidance nearing or exceeding the ARI threshold of 
interest helped increase confidence in the message; 
3) Use of the EPFT in conjunction with products that 
depict antecedent conditions helped to provide a full 
assessment of flood potential.
	 We should note here that there are some regions in 
the United States where the EPFT and EPAT may be 
more unreliable due to the combined poor performance 
of the inputs, particularly in the intermountain West. 
Here, there are significant gaps in both gauge data and 
radar coverage so that both the ARI and QPE inputs 
could be unreliable and have high uncertainty (Cocks et 
al. 2016; Herman and Schumacher, 2018). Confidence 
limits associated with the ARI thresholds are provided 
through NOAA’s Hydrometeorological Design Studies 
Center, but they have not been incorporated into 
either tool. Forecasters should also be aware that the 
performance of the EPFT depends on the model QPF 
going into it, to which no additional bias-correction is 
applied before the values in the table are calculated. 
Thus, depending on the type of weather system being 
forecasted, high-resolution models can have a high-
QPF bias and display high ARI exceedances, while 
low-resolution models can have a low-QPF bias and 
thus low-ARI exceedances.
	 Feedback from NWS forecasters reveal that they 
still view ARIs as a relatively new and advanced 
statistical concept. If they have not had enough 
experience or training with ARIs themselves, they have 
trouble relating them to on-the-ground impacts. If these 
challenges are to be remedied, more locally conducted 
research is necessary into the impacts that can be 
expected when certain ARI thresholds are forecasted. 
The EPFT could benefit from the inclusion of more 
probabilistic information to help forecasters identify the 
likelihood of a certain ARI event occurring. Probabilistic 
QPF (PQPF) from WPC has been incorporated into the 
EPFT, but additional PQPF from the National Blend of 
Models, which has been released in version 3.2, will 
also add substantial value. There are plans to work 
NBM’s calibrated probabilistic QPF into the EPFT so 
that the information can be recast in the context of ARIs 
by percentile, which will help forecasters identify the 
probability of a specific ARI threshold being exceeded. 
The value here, as noted in Craven et al. 2020, is that 
forecasters can use this information to convey the most 

Figure 6. a) The EPFT initialized around 1700 UTC 
22 October 2018. b) An EPFT-generated grid showing 
the spatial extent of the 6-hr QPF/ARI100 values from 
the HRRR (max=107%) valid starting at 1800 UTC 22 
October 2018. 

Figure 7. The updated river stage forecast (yellow-
dotted line) for the a) Biloxi River (flood stage = 12 ft) 
and b) Wolf River (flood stage = 8 ft). The horizontal 
lines represent flood categories: Action Stage (Yellow), 
Flood Stage (Orange), Moderate Flood Stage (Red) and 
Major Flood Stage (Purple). 

http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig6.jpg
http://nwafiles.nwas.org/jom/articles/2020/2020-JOM7-figs/Fig7.jpg
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likely scenario and potential alternative outcomes when 
extreme rainfall is a threat. The use of these datasets 
will allow forecasters a larger toolset to build effective 
IDSS messaging for extreme rainfall events.
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AARI - Average Recurrence Interval
AWIPS - Advanced Weather Interactive Processing System
CONUS - Continental United States
CWA - County Warning Area
EM - Emergency Manager
EPAT - Extreme Precipitation Assessment Table 
EPFT - Extreme Precipitation Forecasting Table
ESAT - Ensemble Situational Awareness Table 
FFG - Flash Flood Guidance
FFMP - Flash-Flood Monitoring and Prediction system
HNX - San Joaquin San Joaquin Valley/Hanford Office
IDSS - Impact-based Decision Support Services
LMRFC - Lower Mississippi River Forecast Center 
MCS - Mesoscale Convective System
NCEP - National Centers for Environmental Prediction
NOAA - National Oceanic and Atmospheric Administration
NWP - Numerical Weather Prediction
NWS - National Weather Service  
PFE - Precipitation Frequency Estimate
PQPF - Probabilistic QPF 
QPE - Quantitative Precipitation Estimate
QPF - Quantitative Precipitation Forecast
RFC - River Forecast Center
SA - Situational Awareness 
WFO - Weather Forecast Office
WPC - Weather Prediction Center
WRF-NSSL – Weather Research Forecast National Severe Storms Laboratory
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APPENDIX B

Model Abbreviations and Descriptions

AAllBlend - Average of CONSAll and previous forecast
CMC - Canadian Meteorological Center model
CMCreg - CMC regional model
CMCnh - CMC global model
CONSAll - a consensus blend of all MOS type models and all deterministic models. 
CONSRaw - a consensus blend of all deterministic models
CONSShort - a consensus blend of short-term, hourly model guidance. 
ECMWF - European Center for Medium Range Weather Forecasting model
Fcst - The WFO’s QPF
GEFS - Global Ensemble Forecasting System
GEFS/R - Global Ensemble Forecast System Reforecast climatology
GEFSMEAN - Ensemble mean of the GEFS 
GFS - Global Forecast System
GFS1hr - GFS interpolated to a 1-hr temporal resolution 
HREF - High-Resolution Ensemble Forecast system
HIRESWarw - NCEP version of the Weather Research and Forecast model - Advanced Research WRF   
HIRESWnmm - NCEP version of the Weather Research and Forecast model - Nonhydrostatic Mesoscale Model
HRRR - High-Resolution Rapid Refresh model
MOS - Model Output Statistics 
MOSGuide - MOS gridded QPF guidance
MRMS - Multi-Radar/Multi-Sensor System 
MPE - Multi-sensor Precipitation Estimate
NAM - North American Model 
NAM12 - NAM produced at a12-km grid spacing
NAMNest - NAM 3-km nest
NationalBlend - National Blend of Models
NBM - National Blend of Models
NDFD - National Digital Forecast Database
RAP13 - Rapid Refresh model (13-km grid spacing) 
RTMA - Real-Time Mesoscale Analysis QPE
SREF - Short-Range Ensemble Forecast model 
TP10pct24hr - 10th percentile QPF from WPC’s 46-member ensemble
TP50pct24hr - 50th percentile QPF from WPC’s 46-member ensemble
TP90pct24hr - 90th percentile QPF from WPC’s 46-member ensemble
URMA - Unrestricted Mesoscale Analysis QPE 
WPCGuide - Weather Prediction Center deterministic QPF Guidance
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